
 

 

 

High Performance Computing for Scientists and Engineers 

Prof. Somnath Roy 

Department of Mechanical Engineering 

Indian Institute of Technology, Kharagpur 

 

Module – 04 

GPU Computing 

Lecture - 33 

Introduction to GPGPU and CUDA (continued) 

 

Welcome, we are discussing GPU computing in the course High Performance Computing for 

Scientists and Engineers and we are basically discussing the Introductory part on GPGPU and 

CUDA.  

(Refer Slide Time: 00:42) 

 

So, in the last few classes, we have introduced GPGPUS and their architectures and showed; 

what is the difference of the GPU architecture and CPU architecture and also the programming 

aspects and now we are looking into CUDA programming. CUDA is a programming model 

for GPUs developed by Nvidia; Nvidia is one GPU hardware vendor and we will discuss the 

CUDA memory model and threads in the CUDA program in this lecture.  
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We are looking into in our last lecture how the process flows in CUDA. We understand that 

we as programmers cannot directly communicate with the GPUs. We cannot ask our programs 

to directly communicate and talk to the GPUs directly put the instructions on the GPUs.  

Whatever programs we are writing that will be preliminary hosted by a CPU and CUDA will 

help the compiler to take part of that job and offload it into the GPUs.  

Also, the memory of the GPUs is; not directly visible to the programmer. So, when he writes a 

program, he asks CUDA to take the relevant memory from the CPU ram and copy it to the 

GPU that CUDA uses. Then CUDA asks the GPU threads to be active when a kernel is 

launched. The kernel is a function which is launched by the main C program; CUDA enables 

C program here and that part that function should be executed in the GPU.  

So, CUDA asks GPUs to launch threads to execute that kernel and once this is done, then the 

output data is written into the device stem or the ram of the GPU. Then CUDA copies this data 

into the CPU ram and now CPU ram data is readable by the programmer. It can be written to 

the hard disk or it can be written out to the screen. GPU RAM is not visible by the hard disk or 

by this or by the file systems. So, GPU ram data is device terms data is computed to the 

CPURAM. This is the work process flow in the CUDA.  
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Now, we will see who is the programming model. Any CUDA program is a host plus device 

application C program say C, it can be C ++, it can be FORTRAN or some other language 

Python, Java. So, it is basically a CPU language program with CUDA function calls and this is 

integrated with the host part of the program which will be executed by the host or the CPU and 

the device part which will be executed by the GPUs.  

The serial or modestly parallel; modestly parallel pa rt means it can be parallel with 4 threads,8 

threads,20 threads etcetera that you run in the CPU that is part of the host C code. We are 

discussing c code here, but it can be in java, Fortran or some other language.  

The highly parallel parts where thousands of threads can concurrently work that will be 

following a single program multiple data kernel code that will go to the GPU part that is also 

like a c program. But it is called as a kernel function and there are certain seven syntax in 

CUDA by which this kernel function is identified that this will run in the GPUs and it is 

supported in for the language like Fortran and C.  

So, again we will look into little detail that says this is the serial part which will run in the host 

or in the CPU. Then the CUDA kernel will be there. The kernel is called like the kernel name 

and in the number of blocks and number of threads and the argument.  

So, when the kernel is launched, multiple threads are launched. Block of threads are launched 

and inside each block there are certain number of threads that gives us the total number of 



 

threads and when this kernel function is called, then this massively large number of threads 

parallel threads are launched  

Again, once the kernel is over, then the program goes back to the serial mode. In this, there is 

a barrier of the threads and all the threads converge and only one thread which is acting only 

in the CPU that works. Again, if there is another kernel launch, then the program control goes 

to the GPU and GPU runs multiple threads there.  

In between them, there are copy host to device; data is copied from CPU to GPU after the 

kernel functions are over, then device to host copy. The data on which the CUDA kernels are 

working; that data is copied from host to device after the CUDA kernels have done their job. 

Then again it is copied from device to host. So, in between these copying’s are done.  
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These kernels are the functions that are called from the CPU code and executed on the GPU 

and kernels return void. GPUs cannot directly return any value to the CPU. Only the GPU 

kernels or GPU cores can write back to the memory of the GPU. Anything which can be read 

by the CPU has to be copied using CUDA from the device stream to the system CPU ram.  

So, kernels, the functions that are being called by the main C program and running on the GPUs 

cannot give any output, cannot write anything back, cannot send anything any value back to 

the CPUs  



 

What are they doing? They are only writing in the GPUs. Therefore, kernels should always 

return void. What are they doing? In the kernel, they are updating some memory locations in 

the device time and this updated memory has to be copied back from the device to the CPU. 

Kernels cannot return anything; kernels will always return void. The output of the kernels will 

be in the memory of the device ram.  

On the CPU ram CPU memory kernels cannot send anything back and this output which is in 

the device stem will be copied from the device to the host. That is the main part of a CUDA 

programming model. That first there is a copying from CPUs ram to the GPUs ram, GPU does 

certain work using multiple threads in different blocks and once the GPU our threads work is 

done, it writes back to the GPU memory and then CUDA copies the data from the GPU memory 

to the CPU memory and now programmer can access that data  

Gpu memory is not directly accessible to us, we need something like CUDA which will copy 

the values from GPU memory to the CPU memory. Then CUDA launches threads in blocks 

and grids. So, the entire set of threads that is launched by CUDA kernel is called a grid. Inside 

the grid there are multiple blocks and inside each block there are a number of threads.  

Why is this so? There is definitely a certain reason behind that, we will explore as we will learn 

it in more detail. But two important factors are that scheduling these threads to get the massive 

parallel thread core architecture of GPU is one factor. Also, another factor is that when we are 

writing CUDA programs, we are doing scientific computing types of jobs in which we are 

mostly interested in matrices. So, some mapping with the threads with the matrix rows that is 

also important 
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Each thread id determines what data to be worked on and this is a very important part in CUDA 

programming. We will later learn in detail about thread algebra that each thread is supposed to 

work on one particular data and the threads are mostly relying on registers. They have very 

small L1 cache and shared memory.  

So, they are working on small amounts of data, but each thread is executing essentially the 

same instruction on a specific data location. So, the thread id should be well mappable to the 

data location. So, each thread id will determine which data will be worked on.  

Now we can see that when a kernel is launched, it launches a grid and inside that grid there are 

multiple blocks. Inside each block, there are multiple threads. So, when a kernel is launched, it 

launches thousands of threads, but these threads are not launched as a contiguous set of threads. 

These threads are launched as parts of different blocks. Each thread is a member of a block and 

there are a number of blocks and they follow something like a Cartesian arrangement.  

We can see here. This is a combination of 3D combination of threads that gives us a block here 

and a 2D combination of blocks gives us a grid here. So, all this block combinedly is a grid. 

And when we launch a kernel, we launch a grid of blocks. Inside these blocks there are multiple 

threads. So, that is how we launch the large number of threads.  



 

Threads belonging to blocks kernel are launched as a grid which are collections of blocks. So, 

when we launch a kernel a grid is launched where there are many blocks. Inside each block 

inside one particular block, say, we took this block 1, 1.  

There are Cartesian arrangements of threads and this can be 2D or 3D; we can specify how 

many dimensions and each thread is therefore identified by the coordinate of the thread inside 

the block. Each block is identified by its coordinate inside the grid.  

Therefore, from the block id, block coordinate and grid coordinate; we can identify the pointer 

to the thread and that pointer can be related with the data on which it is operating and that is 

called thread algebra.  

Blocks and grids follow a Cartesian structure. The definition of threads facilitates image 

processing because it is a pixel-based geometry in which the entire display is differentiated into 

multiple layers and arrangement of pixels on each layer or matrix computing or array handling 

which we will do in the scientific computing case.  

The thread id inside a particular block is mapped to the matrix data structure in a CUDA 

program. So, you know the thread id inside the particular block, you know the block id 

combining them, you can find a global id of the thread which can be mapped to the matrix data 

structure. Now as threads have blocks of multiple coordinates, we can consider matrices of 

higher dimensions also. This is known as thread algebra. While looking into matrix 

manipulations, we have to look into thread algebra also  
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Then it is important to look in the memory architecture of the for CUDA program. So, there is 

a host CPU which writes data to the device ram. Where it writes data to the device ram? It 

writes to the global memory. There are some other memories called constant and texture. 

Remember CUDA, GPUs have been developed initially for graphics purposes. So, terms like 

texture are there which are given to the GPU rams for the graphics rendering purpose.  

However, there are two different types of memory constant and texture. There is another 

memory on the device ram which is known as local memory  

Now, we see where this memory exists and then we will use this device ram while accessing 

and device ram is connected to the main GPU part, the TPCs and multiprocessors to a bridge 

through an interconnect. Inside each multiprocessor there are registers and shared memory 

each. Inside a multi-processor, we have the computing cores who are accessing registers and 

shared memories.  

So, in terms of latency, registers and shared memory variables have less latency because they 

are residing exactly on the multiprocessor. Register, we know it is there on the processor 

almost. So, multiprocessors can very quickly access data from there.  

But the main global memory as well as what is called local memory; local memory is memory 

associated to each thread, but this does not reside on the multiprocessor. So, this is on the device 

time. So, this has high latency accessing the local and global memory.  



 

The constant and texture though the name suggest by constant that this value will not be 

changed throughout the kernel operation. So, once the kernel is launched, the constant can be 

copied to the GPU chip close to the multiprocessors because we are not changing it will be 

fixed there. If it is the multiprocessor if the codes need to read this value, they can read it from 

there. So, there is a cache for constant and texture which sits on the chip.  

So, if we look into the GPU, the GPU has two part the devices; one is the GPU chip, another 

is a device frame attached with the processors or TPCs texture processing clusters with an 

interconnect bridge.  

Now, if the memory we are considering is on the chip, on the GPU chip, on the TPC or on the 

streaming multiprocessor, it can be read very fast and thus utilizing that memory gives us better 

efficiency. So, it is important to see which memory is where. The register memory is on the 

chip, it is not important whether it is cached or not because it is on each core that is directly 

accessing the register.  

The thread remembers this register once the thread is over the register value, it cleans up, it 

washes off as the thread is there. The local memory is cached. Local memory resides on device 

ram. It is cached in L1 and L2 is cached in L1 and L2 and for compute capability 5, it is only 

cached in L2, but for other devices; it is cached in L1 and L2 ram. So, it is an off-chip memory, 

but it is cached in between the ram and the GPU chip. It's a lifetime thread.  

So, what is what a thread is operating on is either the register, the private memory to the thread 

is the register or, if it requires more memory, it is the local memory that is private memory. 

This is not seen in the other thread, this is what we talked about private memory in open MP, 

local memory or a register memory is the same register. We know already it is in CPUs also. 

Local memory is part of the private memory. It is residing in the device stem. So, it has slow 

access, but it is cached in L1 and L2ram.  

Shared memory. What we talk about here is shared by all threads in the block. Shared memory 

resides in the multiprocessor. So, we understand that when we assign a block all threads in the 

block goes to one multiprocessor and shared memory resides as available to all the threads in 

the block. There is no requirement of caching this memory because it is readily available to all 

the threads there. It is readily available to the chip. So, it is very very fast; it can be accessed.  



 

 However, if we need to use L1 cache for some operation, we can assign some part of the shared 

memory to behave as a cache that can be done in CUDA programs. The global memory which 

resides on the chip. It is cached in L1 and L2 devices for compute capabilities 6 and 7, cached 

only in L2 for other compute capability memories.  

It is visible to all the threads global memory as well as it is visible to the host. It can be that 

global memory can be copied back to the host and the lifetime is as long as the host has copied 

in the memory into the ram, it will still be there. As a host will copy some other memory to that 

some space, it will change. So, this memory is controlled by the CPU only.  

Constant and texture; they cached to the GPU chip, but their main location is outside the chip 

and they are allocated by the host. They are read only by memory, the other memories can be 

read and written by the chips. This is the memory architecture here.  

Now, we need to keep in mind which memory resides where and which memory is visited is 

how much latent from that. So, shared memory and registers can be accessed very quickly by 

the GPU chips. If it has to access anything local memory, though there is a cache, it will be 

slower access because again this local memory cache is only for 6 and 7, it is also L1 Cache. 

Earlier it was L2 cache only, but this can be cached and L1 caches can be very close to the 

shared memory, so, they can be read quickly, but once it is cached certain issues related to 

cache have to be looked into. Whether cache coherency issues will be there? No because local 

memory is a private memory. So, cache coherence is not there; false sharing is not there because 

local memory is a private memory  

Shared memory is not a private memory. It is visible to all the threads in the block. It is not 

cached, therefore, the ideas like false sharing type of things might come in the shared memory. 

Though it is not cached, it is visible to all the threads and this is read write memory. So, all the 

threads can change this memory.  

So, contentions can happen in the shared memory and idea of false sharing might come in the 

shared memory. We have to be cautious while sharing memory; however, the shared memory 

size is small.  

So, when bringing data from global memory to shared memory, we cannot bring a large amount 

of data; only a small amount of data can go and sit in the shared memory. The global memory 

is accessed by all the threads and it is also cached. So, cache issues might come here. But again, 



 

the cache coherency type of protocols, atomic operations are supported by CUDA; cache 

coherence protocols are established by CUDA itself.  

Well performance on the CUDA and GPU program depends on efficient use of this memory 

architecture that we understand.  
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Now how are the thread and memory architectures in a heterogeneous CUDA program? Why 

do we call it a heterogeneous program? Because if we talk about a CUDA say CUDA C 

program, it is a program which will not only run in GPU or in CPU, it will run in both CPU 

and GPU. A part of the program will run in CPU a part of the program will go to GPU that is 

why you call it a heterogeneous program. Because the simple c instructions will run in CPU 

and the massively parallel part that will go to GPU.  

The execution will be like that initially the host will run the serial part. Then the kernel will be 

called the device will launch the grid of threads and then the grid will come as a grid of blocks 

then, inside blocks there will be threads. So, a number of threads will be launched there.  

Once this thread's scopes are over, it will go back to the host and the host will run another 

simple C program. Again, another set of grids will be launched when the next kernel will be 

called.  

When host when host will ask the device to operate, it will copy the relevant data from host to 

device and again  once the devices job, the GPU jobs will be done; the relevant data will be 



 

copied from device to host if copying is required; else the and the data is changed by the GPU 

device in the GPU ram only not on the CPU device CPU ram. So, if you have to read the 

changes, you have to copy it from GPU to CPU.  

In the memory part when a thread is launched, it operates in the local memory on the register 

directly and the thread block operates on the shared memory. The entire set of threads or the 

grids they are communicating with the global memory. So, CPU and GPU have their own 

memory.  

Threads first take data from registers, in a sense threads operate on a private data. They take 

data from a register if there is more data; they create a local memory and take data from there.  

These blocks can use the on chip shared memory. Then you have to ask the blocks to operate 

on that memory and the entire set of grids, they are using the memory which is residing in the 

device ram. CPU to GPU memory transfer can be only done by allowing CUDA to copy data 

from CPU to GPU or vice versa.  
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Also, lately CUDA has come up with unified memory programming architecture. Unified 

memory eliminates the requirement of copying data from CPU to GPU and GPU to CPU rather 

makes the memory visible to all the CPUs and GPU. So, it somehow gives a virtual sense of 

connected memory in between the CPU and GPU.  



 

GPU-s of class Kepler and above with CUDA version 6. 0 plus or compute capability or SM 

architecture 3. 0 plus facilitates unified memory programming. Programming becomes simple 

here because it is the same set of memory which both CPU and GPU is visualizing. Instead of 

looking into different memory and copying a unifying memory space with coherence across all 

CPUs and GPUs are seen here.  

It gives a tighter association of CPUs and GPUs and more straightforward implementation 

because you really do not need to think about copying back and copying out here. The data 

access is maximized by migrating data towards the processor using it. So, data will reside in 

one particular location in the CPU ram. If the CPUs are working, then it is visible to the CPUs. 

If the GPUs are working, the data will be migrated to the GPU ram. That support is provided 

by the newer architecture of GPUs which are started from CUDA class Kepler SM architecture 

3. 0 plus and the newer version of CUDA compatible with CUDA version 6. 0 plus.  

So, this gives more flexibility to the programmers as I told you earlier that GPUs are evolving 

in terms of flexibility and performance. So, this gives more flexibility to the programmers and 

the performance tuning is also better possible here.  

However, we will stick to the legacy version of CUDA programming that is a non-unified 

memory or programming approach or a heterogeneous memory approach where we will 

consider GPU memory and CPU memory separately in our programs. Because we are 

specifically interested here in seeing how different elements of GPU memory are connected 

and how we can operate over chip and off chip memory efficiently to get right performance.  

The one extremely important advantage of a unified memory program is that if there are 

multiple GPUs as we can see here, the multi GPU programming is facilitated much easily in 

unified memory architecture. So, we will at some point of time try to discuss some aspects of 

multi GPU programming and then we will see the effects of unified memory approach.  

But now while learning CUDA program we will stick to the heterogeneous memory approach 

and look into CUDAmemcpy between device to host and host to device considering them as 

separate memory entities.  
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One of our references Shane Cooks, Developer’s Guide to Parallel Computing with GPU. 

NVIDIA has a number of releases documents and presentations on GPU and CUDA because 

we are looking into CUDA programming which is proprietary of NVIDIA. I am heavily relying 

on materials provided by NVIDIA and two of the important reference manuals are CUDA 

programming guide from NVIDIA and white paper on Volta or V100 architecture.  

These two I have consulted heavily and it is important for any CUDA program developer that 

you go through CUDA C program guide if you want to learn CUDA programming or if you 

even if you learn CUDA programming, if you want to optimize your applications, you must go 

to the CUDA programming guide.  

If you are a Fortran programmer, we will discuss it in next class. There is a similar Fortran 

CUDA Fortran guide which is provided by both NVIDIA and PGI. PGI which gives Fortran 

compilers.  
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Well, the conclusion is we have discussed GPU architecture and programming modules, 

introduced CUDA while discussing GPU programming model and the memory and thread 

hierarchy in CUDA and GPU program presented.  

In the next class, we will look into CUDA detail and we will start looking inside the CUDA 

programs.  

 


