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Hello, welcome to the class of High-Performance Computing for Scientists and Engineers. We 

are discussing the 4th and final module of this course which is GPU computing and we are 

continuing with our previous lecture introduction to GPGPU and CUDA. 
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In the last class we have looked into coprocessors and accelerations and we started discussing 

what is a general-purpose graphics processing unit and what are the architecture for GPU and 

I mean what is special about GPGPU and then we are also discussing comparisons of GPU and 

CPU. 
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We will continue with that discussion in this class. So, as we are discussing in the last class 

GPU-s can give us extremely high speed up compared to CPU and what a cluster of 100 of 

CPU-s can do the same speed up we can probably get using a single GPU card of most recent 

capability. GPU-s were initially designed as the name suggests graphics processing unit, for 

graphics purposes. However, it is later realized that these GPU cards which come with multiple 

cores for processing simple instructions concurrently and their number of cores are very high 

of the order of a few thousands. They can be used for scientific computing purposes for parallel 

computing or with crunching numbers of arithmetic operations involving arithmetic operations 

and that is what is called a leap in the GPU technology. 

General purpose graphics processing units or GPU-s used for other activities came here for this 

general purpose. Graphics processing units or GPGPU-s are the modified versions of GPU 

which are modified to handle the jobs which CPU-s are traditionally designed for. These are 

things like floating point operations. We will see if there are GPU utilities in deep learning 

also. So, these GPU-s initial roles were graphics rendering, number crunching doing arithmetic 

operations were CPU-s jobs. 

But now GPUs are modified so that they can replicate some of the CPU-s jobs and can be used 

for arithmetic doing floating point calculations or arithmetic operations and these GPUs are 

called GPGPU-essentially all modern GPUs are GPGPU-s they can-do floating-point 

operations. However, we do not use any GPU for our scientific computing application, because 



when we do scientific computing it is important for us that what is the accuracy of the solution 

and therefore, we need to have a control over the numerical errors or the round of errors. 

That can be controlled by using double precision floats and therefore GPU-s with good double 

precision performance are important for our use in scientific computing. So, though all the 

GPU-s can do double precision computing and can be used for scientific computing, but 

performance wise the GPU-s which have good double precision performance, that means, 

which has a greater number of FP 64 double precision cores can be used for our purpose. 

Now, GPGPU-s can be programmed to deploy the processing power toward addressing 

scientific computing needs as well and they can do matrix computing. We will look into it 

through our discussions. These GPGPU-s are accessories to the main computers they cannot 

be directly accessed; as their accessories you need a CPU which only can talk to the GPGPU 

user cannot directly talk to the GPGPU. 

Therefore GPGPU-s are always connected to a CPU and this CPU-s offloads their compute 

heavy jobs in terms of concurrent instruction streams to the GPU and different cores of the 

GPU-s work and execute this instruction streams and that is how we get the GPU performance. 

General GPUs have been in the market for nearly 50 years from 1970 there are GPU-s in the 

market. However, this floating-point support and programmable shaders; shaders again this 

term comes from shading which is a graphics-based utility. So, on the shading algorithm there 

are certain modifications through which this can be programmed and floating-point 

calculations can be done. That converted GPU to GPGPU-s and only from 2001 these things 

are available and GPGPU-s are in market. 

It is seen that matrix multiplication can be done very efficiently using GPGPU-s and therefore, 

HPC-s or scientific computing applications can be addressed using GPGPU-s and HPC systems 

are using GPGPU-s. So, GPU-s were initially designed for graphics purposes. It is observed 

that by using the graphics capability of the GPU-s they can be programmed to do floating point 

operations, they can do matrix multiplications very efficiently and therefore we can use them 

for HPC purposes. 
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Now, if we look into the architecture of the GPU, if you see a CPU architecture this is a 

multicore CPU or quad core CPU. Each core is connected with one L1 cache, L1 cache is the 

cache which is sitting next to the core on the chip core; each core has a large control unit. So, 

if else loops, different complex operations can be operated by the core, there can be scheduling 

in the core, some active jobs are working on that core, suddenly there is a latency there so some 

other job can be pushed, it can be hyper threaded shared across many tasks etcetera. Then 

multiple cores are there say CPU typically have 4, 8, 16 cores it is not a great number of cores 

can be there, but some cores can be there. Then few CPU-s are connected with the same L2 

cache, few cores are connected with one L2 cache all the cores are connected with one L3 cache 

and then finally they are connected to the dynamic RAM DDR. 

If we look into GPU-s the GPU-s have a DRAM and then L2 cache and there are a large number 

of cores, but with a huge number of cores there is one small control unit under small L1 cache. 

In the earlier version of the GPU there was no L1 cache. So, it was taking data directly from 

the RAM by L2 cache and working on that there is a high latency on the data. 

So, whatever GPU-s are working they are relying very small on the control and the cache, 

therefore they cannot execute complex instruction streams, they can execute simple instruction 

streams, because they have less control. They cannot work on a large data set or rather they can 

work on a very small amount of data set. 



Because they are mostly relying on the registers for working, if they have to take something 

which is not fitting in their register, they have to take the data from the L2 cache and dynamic 

RAM or device RAM which is quite away from the processor. So, this is one difficulty in GPU 

programming that the most of the transistors in GPU-s are dedicated for data processing for the 

processing units or cores. Very few transistors are given for control and L1 cache and therefore 

they have a huge compute potential they can do a lot of computing most of the transistors are 

actually for doing additional subtraction operations. 

However, their data access has high latency and they cannot access large amounts of data, they 

cannot also perform well complex logical operations because they have a small control unit. 

So, the number crunching or operating on data using the registers or taking a small amount of 

data and doing calculations over that is typically what a GPU can do. We will have a more 

detailed discussion on this while we will discuss CUDA. 
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Now we have seen that earlier that with the recent GPU versions the computing power of GPU-

s, their flexibility is increasing. This is increasing with the hardware of the GPU, initially GPU-

s were for graphics purpose now vendors NVIDIA or AMD are designing GPGPU-s where 

GPUs are for HPC purpose. 

While doing so they are looking into more hardware capability for doing HPC computing using 

GPU-s and similarly the software the support system the schedulers are also putting there. 

Combining the features of all both hardware and system level software features of the GPU-s 



how we can use them for scientific computing purposes. There is a from NVIDIA there is a 

feature set called compute capability. 

Compute capability is given as compute x. y, x is the major version which comes from the 

compute capability which comes out the newer newer version of the GPU. Why are the minor 

changes in the feature set? So, with increased value of x we are getting more flexibility and 

better performance in GPU-s, we can quickly look into the compute capability in detail.  

The compute capability of a device means the GPU device here is represented by a version 

number that is also sometimes called the SM version. This version number identifies the 

features supported by the GPU hardware and is used by applications at run time to determine 

which hardware features or instructions are available on the present GPU-s. 

So, once we identify what is the compute capability of the present GPU accordingly, we can 

write the programs and modify the applications based on that. What are the computer 

capabilities? For example, the first compute capability version compute 1.0 was the oldest 

version of GPU for 8000 series cards. Then compute 1.1 came for the 9000 series card; it 

allowed data transfer and kernel execution overlapped; the kernel is the instruction stream that 

is operating on the GPU. 

While a GPU is processing some instruction, it requires data for the next instruction set it will 

require some other data and this data transfer because the GPU is taking data from the device 

RAM and also the device GPU RAM is getting data from the CPU RAM mapping data from 

CPU to GPU. So, there is a certain amount of latency involved in data transfer. So, when 

compute 1.1 came the hardware allowed overlap between kernel execution or processing and 

data transfer. 

Similarly, when compute 2.0 came it introduced L1 cache before that then GPU there was no 

L1 cache. So, the Fermi architecture which came with compute 2.0 introduced L1 cache; they 

put an L2 cache which will be shared by all the streaming multiprocessors. 

So, this is in between the device memory and the streaming multiprocessor so they put a shared 

L2 cache. But earlier there was no L1 cache, so when compute 2.0 version is invoked it is a 

version of GPU which has L1 cache. Why L1 cache is put there for graphics rendering purpose 

L1 cache was not important, but for number crunching purpose for floating point operations 

L1 cache is important. 



So, as GPU-s are moving more towards HPC applications development in hardware 

architecture is coming and that development in terms of the computing capability of the GPU 

is named as compute capability and coming to the newer compute versions.  

Higher versions of compute capability give more flexibility for the programmers, you do not 

have a cache, you have to completely rely on registers, it is more difficult to program. It is also 

because the program will run less efficiently because the latencies are high. 

But as the cache is introduced, programming is easier and more flexible for the programmers, 

also the efficiency will be better because latency will be reduced. So, with higher versions of 

compute capability we are getting more flexibility and more efficiency in the implementation. 
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There are some examples of advanced features with compute capabilities, starting from 

compute version 3.3 and we look up to compute version 8. 

So, atomic functions were not there. We understand that atomic operations are extremely 

important in terms of GPU programming. Because multiple cores are there, they are working 

on the same data set. So, if one core tries to operate on a certain part of the data set, that part 

and has to be unaffected by the other cores. 

Therefore, the atomic operations are important here. But initial compute versions did not have 

all the atomic features and we can also see that even from version 3.5 for 32-bit integer value 



in the global memory global memory is the device GPU RAM, and up to atomic addition of 32 

bit or single precision floating point operation was there from compute capability 3.5. 

When we talk about double precision of atomic addition, atomic addition with 64-bit floating 

point it was not there up to the compute version 5. Only from compute version 6 double 

precision atomic additions; atomic functions we know that a memory location is being modified 

only by 1 thread, it is not being interrupted or hindered by the other threads. 

There is no contention among the threads if the atomic version is not their multiple threads 

trying to access the same location, there will be contention therefore the performance will fall 

down. There can be garbage output because the threads are operating on the same variable at a 

random order and thus output can be garbage. 

So, in certain cases atomic operations are important, if atomic capability is not given to the 

threads then the programmer has to be very cautious and include complex logics which will 

take care of the contention. For example, padding increases the data set size, so that there is no 

fault sharing which we have done in openMP programming; this type of logic has to be brought 

into. 

So, programmers' jobs become more restricted as well as performance endurance happens. But 

when up to version 5.3 we can see atomic addition was given for single precision 32-bit 

variables. For 64-bit floating-point operations only after 6 atomic operations came, so 

programmers got more flexibility and performance also increased. 

Similarly, something called half precision operation, tensor cores came with higher versions, 

one of the important is L2 cache residency management that how device memory to L2 memory 

mapping and this memory management will be done. This was not there up to version 7, that 

means up to and version 7 is associated up to the Pascal version of the GPU. So, up to Pascal 

it was not there from the Volta V version it came here. 

 There are many other aspects so we can see that some of the features were not present for us 

previous compute capability version in an advanced compute capability version. However, we 

must not confuse compute versions with CUDA versions, CUDA version is something else 

CUDA version is associated with the software capability of the CUDA software in which we 

will by which we will develop the GPU programs. Computes are more with the hardware 

capability of the GPU. 



There is a comparison between Kepler GK 180, Maxwell, Pascal and Volta GPU and the 

computer versions are different. Kepler has computed version 3.5. So, if we think of atomic 

addition of double precision that was not possible in Kepler, but in the newer GPU it is possible. 

Also, this is one of the hardware features that certain memory access operations and some other 

operations in terms of synchronization are possible in modern GPUs. 

But also, we can see that in terms of the number of threads, in terms of the number of registers 

in terms of the number of the, in terms of the shared memory size, in terms of the number of 

cores the modern GPU are making some advancement.  

But this is another thing to look into that Kepler has more single precision core, but Volta has 

less single precision code FP 32 core. Because we have seen previously that the double 

precision cores have increased in Volta and journey from single precision to double precision 

again one of the driving factors is scientific computing. 

So, modern GPUs are getting better equipped to run scientific computing applications and they 

are serving our purpose better. GPUs are evolving in terms of hardware and program 

programming flexibility. So, this is one very important point that learning GPU programming 

is important in a futuristic sense also, we understand that programming with GPU-s is more 

difficult than programming with CPU-s. 

But GPUs are evolving very rapidly and they will bring more new features and the 

programming flexibility will increase as well as efficiency will increase. It is the way the 

market and technology are moving; we can see that these are going to increase in the future. 

So, if we equip ourselves in GPU programming, we will get the benefit in a very soon. 
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Let us keep on comparing GPU-s and CPU-s, GPU contain thousands of arithmetic units and 

their power is used to accelerate the program. So, this is a GPU with a number of arithmetic 

units, but in CPU there are a smaller number of arithmetic units.  

Most of the transistors in CPU-s are dedicated for data caching, there is a huge cache in CPU-

s 64 kilobyte cache is very common in CPU-s. We have looked into CPU caches when looking 

into open MP programming specifically and there are many transistors which are controlling 

and scheduling capacity into the CPU-s. 

However, in GPU these transistors are not there, rather if you can put more transistors in a GPU 

card you will deploy it for adding more cores to the GPU for increasing the computing power. 

So, the idea is that in CPU you have a smaller number of computing cores, but the computing 

cores are supported by cache and control units. In GPU you have a large number of computing 

cores, but they have less support in terms of cache memory management, computing scheduling 

etcetera. 

So, what can you do in the CPU? You can run a complex program involving a huge data set, 

but you can run fewer concurrent instructions. So, what can you do with the GPU? You can 

run simple instructions over a small amount of data set, but you can run a large number of 

concurrent instructions.  



That is the main difference in the features of CPU and GPU. Therefore, programming with 

GPU requires more attention because the support and control and the memory access issues are 

more difficult in GPU compared to the CPU-s,and therefore if you do not write the program 

well you can get pathetic performance. 

Typically, GPUs have small cache but large number of computing cores and each of this there 

are multiple streaming multiprocessors that is also important. That in GPU there are many SM 

streaming multiprocessors inside which many cores are there each streaming multiprocessor 

can independently schedule the threads into it. 

So, if you run a large number of threads few will be taken by one streaming multiprocessor and 

the number of threads can be much more than the number of cores available. But this streaming 

process multiprocessor will itself schedule the threads and hide the latency. So, one thread is 

searching from some data it will put scheduled the other set of threads and they will be active. 

So, some way latency hiding is done also in between the threads and that gives more flexibility 

in the positions. A large number of registers are available in GPU, and these registers are 

because it has less control, but if you have to do a scheduling one some of the threads are 

available and now then a new set of threads will be there.  

That is done by the registers: the registers take the memory directly on the C processing unit, 

they are the memory part of the processing unit. Take that load the data on the register and the 

processing unit operates over it in it. 

So, some of the registers are working for some threads and some other registers will work for 

some other threads, that is possible in GPU-s and a large number of registers also have GPU-s 

to schedule in between them and switch the contexts. Newer GPU versions show more 

flexibility in terms of memory usage, for example earlier GPU did not have an L2 cache, the 

first time as the GPGPU-s came GeForce 2000 there is no cache between the dram and the 

shared memory. But in the Pascal or Volta there is up to the last level up to L3 cache is available 

there. So, GPUs are evolving in terms of cache usage and being more flexible for the 

programmer. 
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There is another very important aspect of GPU programming. What we have shown here is a 

theoretical performance comparison between GPU, Xeon phis and INTEL Xeon CPU-s. This 

performance is not in terms of floating-point operations per second only but flops part what. 

How much electricity is required to do the computing? It is well known now that HPC centres 

are energy sinks, they require huge amounts of energy for computing and we have already 

discussed PUE ,Power Utilization Efficiency.PUE is always greater than 1, 1.5 even more, 

which tells that if 1 unit of wattage is required to run the computer for one particular computing 

0.5 unit will be required for air conditioning and other purposes. 

So, you require a huge amount of energy to do high performance computing, because the 

number of flops is high, your computers heat up you need to cool down and the power required 

by the transistors to do the floating-point operations is also high. Now GPUs cost power, if you 

compare to a single CPU many times GPU cost power. But they have less space and you really 

need a smaller number of components for a GPU which comes as an accessory to the main 

CPU. 

So, when you are comparing with the floating-point operations per second by the power 

utilization GPU perform much better than CPU-s and it can be seen that there is around 8 to 10 

times improvement in flops per watt power from CPU to GPU. So, when we use GPUs using 

the same energy, we get more computing power. 



So, they are more energy efficient compute computing systems also, because one I think we 

can clearly understand that this is simply a card attached to the main computer. If you think of 

a multi core system or if you think of a multi computer system you need a huge rack with much 

more space, many computers there you might need a data centre where the complete room will 

be dedicated for keeping the computers and you require cooling for the computers when the 

computers are working. For one CPU you need to operate the motherboard you need to put 

current to the computers SMPs etcetera. 

So, overall power requirement is much higher in CPU-s, but GPU-s are much greener GPU 

require less power compared to the CPU-s and that is another advantage of GPU that with less 

energy you can get better speed. 
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Now we look into the programming aspects of GPU-s and CPU-s. Limited number of complex 

tasks can go to the CPU, whereas GPU-s can run a large number of simple tasks. So, if we see 

a CPU there are 4 cores so 4 jobs can be running in the CPU. 

If we see a GPU there are multiple cores and multiple jobs can run in the multiple concurrent 

instructions can run in the GPU and this can be of the order of thousands and there is some 

scheduler inbuilt inside the GPU. So, the threads can be scheduled in between them. So, if there 

are 1000 cores there can be more than 1000 threads which are operating over the GPU-s in an 

auto scheduled manner. 



However, GPU-s cannot work independently; they always require a CPU to be connected with 

them, programmers cannot directly run a job in a GPU. Jobs are launched from a host CPU to 

a device GPU and we always use this term host and device; GPU is a device the CPU which is 

offloading the jobs into the GPU is the host. So, we use this term, this is host and this is device. 

GPU-s require more granularity and less task dependency, we can understand because there 

will be 1000 of threads or even 10000 of threads active for doing one particular part of the job, 

it has to be extremely granular. Also, because these threads are independently working among 

themselves, there must not be any task dependency among them. So, whether the program can 

be given off loaded to the GPU requires that it must be extremely granular and should have 

less task dependency. 

Memory accessing GPU is different from CPU-s. We understand that, due to the small or earlier 

version there was no cache, small cache and small on chip memory. On the streaming 

multiprocessor chip itself the amount of memory is very small.  

So, that is why most of the memory has to be taken from the device RAM, and in the device 

RAM it cannot operate on it. I mean cannot you cannot directly give anything assigned to the 

device RAM or the GPU RAM. It has to take the copy it has to copy the memory from the 

device ram. The device RAM has to copy the memory from the host or CPU ram. 

So, these memory issues are there so memory access in GPU is different than in CPU and we 

have to be very cautious about the memory management when looking into a GPU program, 

we will look into these things in detail. Programmers need to give special attention to on chip 

memories while GPU programming on chip memory. What is on chip memory? On chip 

memory is the memory given on the streaming multiprocessor or on the TPC Texture 

Processing Cluster which is very quickly accessible from the cores, is less latency and higher 

bandwidth. 

So, what is on chip memory and how can this on chip memory be accessed and even if we think 

about L1 cache that is on chip memory in a GPU ram. So, how these memories can be accessed 

programmers have to keep their attention on that. GPU threads are scheduled in the SMs 

because the streaming multiprocessors themselves can schedule the threads. So, it can take 

more threads than the number of cores available and schedule them accordingly. 



Because there is a large register file which is given with the GPU it can do a latency hiding 

using the registers. For example, if one thread is working one particular variable and sends for 

that variable from the device RAM it is not available on the chip. The other thread can be active 

at that time, it can load the variable on another register and start working there. 

So, there is a scheduling based on the register usage in the streaming multiprocessors of the 

GPU. That scheduling helps us to launch a huge number of threads much more than the 

available. The number of cores is also very high, but even so we can launch much more threads, 

but get very good performance in the GPU-s. 

So, now we need to look at the programming on the GPU and we will discuss the programming 

APIs, which helps us to write a program which will offload some of the jobs from the CPU-s. 

and these jobs will be executed in the GPU we will look at. We will discuss these APIs in the 

next class. 

 


