
High Performance Computing for Scientists and Engineers

Prof. Somnath Roy

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Module - 01

Fundamentals of Parallel Computing

Lecture - 03

Architecture for Parallel Computing (continued)

Welcome to our MOOC course on High Performance Computing for Scientists and

Engineers and we discussing Architecture for Parallel Computing which is part of the

first module of the course which is Fundamentals of Parallel Computing, we are

continuing the discussion from the last lecture.

(Refer Slide Time: 00:43)

We discussed about architecture of a sequential computer, we discussed about

interconnect networks; that means, how are different computers connected in both shared

memory and distributed memorial arrangements. And we have also quickly looked into

couple of terms like cache coherent protocols, false sharing and communication costs.

And next we will look into some of the examples of parallel computing architectures

which are processor arrays, multiprocessors and multicomputer .Then we will see some

of the examples of practically working parallel computing large infrastructures which are

HPC clusters and will also look into GPU-s, will try to put some more detailed

discussion on communication costs and then discuss about Flynn’s taxonomy.

(Refer Slide Time: 01:41)

Processor arrays are the most initial days development in parallel computing and one of

the examples are the vector computers.

A vector computer is a CPU system designated to operate simultaneously on all elements

of one-dimensional array, compared to an ordinary processor which works on a single

scalar only. So, if I write s is equal to b plus c sequential computer will consider that a is

a variable, b is another single valued variable, c is another single valued variable and add

b and c and get a value.

If I use a vector computer then a is a vector A is an array or a vector, A has said 100

elements, similarly b and c have 100 elements. So, the same operation will be processed

over all the 100 elements of b and c, there will be multiple computers which are doing

same operation on different elements of a vector. So, instead of processing one by one of

different elements on the vector, all elements of the vector will be worked on a go.

An example of vector computer is a processor array which is a vector computer

implemented as sequential computer, which is connected to set of identical synchronous

processing elements capable of performing same operation on different data. That means,

it is the same operation which will be done like a vector operation adding two vectors.

So, same operation addition will be done on all the respective elements of these two

vectors and this will be done by different processors, or different processing elements

which are synchronized and are designated to do that.

So, a vector computer again while saying. So, I will show you also later, but we can tell

that vector computers are not very much of use today because they have some primitivity

in their operation, they cannot work on complex algorithms. So, we use something else

now.

But let us see what is in a vector computer, there is a CPU which has its own memory

and I/O devices. Now this CPU is connected to a scalar bus and then to an interconnect

network switch and this interconnect network switch further connects different

processors which has their own small memory units.

And they are again connected to a global result bus and this result bus is connected to the

CPU that means, scalar memory is one by one goes from the CPU and resides in the

memories of different vector processors present in the processor array. And these

processor arrays have different CPUs and each CPU is connected with their small

memory part. So, this is the scalar memory bus is connected to the memories of different

processors and each processor is also connected with the interconnection bus and the

instruction goes from the CPU directly to each of this processor. They take the small

amount of memory associated with that, work on them and the result goes to a global bus

which returns to the CPU. This architecture is taken from Quinn’s parallel programming

book.

(Refer Slide Time: 05:31)

If we try to see in more detail, that there are multiple processors processing elements

each has their own small memory. And if we have a large vector, parts of the vector or

elements of the vector are residing on this memory and this is the same instruction which

comes from the CPU, is replicated to all the processor. This processor takes the memory

associated with that processes the information, returns it to the global result to the CPU.

Each processor P has its own RAM M, but connected with a main CPU. Moreover, they

shared the same address space which is in the CPU memory. So, all these M small

memories are some way mirroring some part of the memory in the main address space.

The vector processors main CPU launches same set of operations through different

vector processing parallel units to the processor arrays to different elements of the

vector. It is the same set of operation which must go to all the processors.

This is inefficient in running conditional statement for different processors. If different

processors need to do something different then we use some if else statement to make

that. This is inefficient because these processors do not have well develop control unit

also, they are supposed to work on the instruction which is given by the main CPU to

them. So, if there are some complexity in between them, if there are some logical if else

type of logical reasoning statement in between them, it is an inefficient system it cannot

work properly there.

This architecture is typically not in use today. However, some of the modern

coprocessors like Intel Xeon 5 or GPU architectures are inspired from this, that there are

also many processing units which takes job from the instruction from a main CPU and

they do essentially similar works on different parts of the data.

(Refer Slide Time: 07:53)

So, I said that these are not typically in use today. So, what is in use today for that we

need to look into multiprocessors. Multiprocessor is a multiple CPU computer connected

with a shared memory. So, there is a bus or an interconnect network switch which is

connected to a shared memory, and this memory can physically come in piece pieces, but

virtually or in practice this is a same set of contiguous memory which is visible to all the

processors they have their own caches. Multiprocessor have different caches, but their

memories map to the same address space, even if some memory goes to cache of

processor 1 and the same part of the memory goes to cache processor 2, they are must be

mapped to the same address space.

However, it is also possible to give some data very specific to each of the processor and

this is called private data. We will look into private data when we will see threaded

parallelization and especially open MP program, but the main data is shared. So, the

main data you can think of a main amount of money in a joint account, visible to

everybody but everybody might can have some amount of cash on their own money

back.

So, there is also some flexibility to maintain some private data which is not visible to all

the processor, processor 1 private data is separate from processor 2. But the main data is

in this memory visible uniformly to all the processors and this is again called a

centralized multiprocessor or Uniform Memory Access multiprocessor or UMA.

Now, if one part of this data which is residing in its cache is updated, it must be reflected

in the main memory, because this data might also be shared by the second processor and

if it is not reflected to the second processors cache, then there will be a conflict.

So, say the variable a is called by first processor and because they are looking into the

same address space, processor 2 is also looking into and if processor 1 updates variable

a from processors 1th cache it should come to the main memory and must also be

reflected to processor 2s cache otherwise there will be a cache inconsistency.

So, cache coherency is required so, that shared memory updates are same in each cache,

and this is done through write invalidate protocol. That means, if processor 1 is writing

changing some value in array a, then processor 2 3 4 are cannot do that. If they try to

write same on the same array it will be invalidated. So, some data which is updated by

one processor cannot be differently updated by other processors.

And also, sometime processor synchronization is required, for that, which is at most if

one processor is doing some activity and many processors do are designed to do the

similar activity, but it is mutually excluded, at most one processor is engaged on that

activity. So, if there is one variable all the processors are trying to update, then the others

will not be allowed to do that and at most one processor will be allowed to. The three

will be some sequentially across the processors and this is called a synchronization.

And barrier synchronization is that no process will move beyond a certain point unless

all the processors have done that. So, even if one processor has finished one work, but

other processors are also asked to do that work and there is a barrier synchronization put

there, this processor which has finished the work cannot take the next instruction set till

other processors finished up to that particular set, these synchronizations are often given

in multiprocessors.

This is known as a Uniform Memory Access or UMA centralized multiprocessor is also

known as UMA or Uniform Multiprocessor. There are also some many very commonly

referred to as Symmetric Multiprocessors or SMPs.

They are also known as Symmetric Multiprocessor or SMP. Uniform memory access

called because this is one piece of memory or one single address space or one piece of

memory connected with the bus which is visible by all the processors is uniformly

visible by all the processors.

(Refer Slide Time: 12:38)

The other variation of a shared address space system is distributed multiprocessor or any

non-uniform memory access. Multiprocessors in a single bus has limited scalability as

shown in the previous arrangement, because it is a single bus in which you are putting

many processors, so you might not be able to put many processors on that bus due to

space issue, due to electricity issue, due to heat generation issue.

So, one idea is that use distributed multiprocessors, where you can increase number of

processors to a large extent. In distributed multiprocessor each processor is attached

directly to one piece of memory and all the processors are connected via interconnection

switch with each other. Like many processors each processor has its own cache and own

memory, with own input output also, and all the processors are connected through an

interconnection switch. However, since we are talking about shared memory system,

therefore, all these memories must map to a common global address space.

So, even if some part is residing here some part is residing here, some part is residing

here, some part is residing here, etcetera and if there is some requirement to

communicate, some requirement to access this data by this processor, this should request

to the interconnection switch and look into the data. However, though they are physically

different memories connected to different processors, but they point to the same address

space.

Each processor can access memory attached to it via non uniform memory access

protocol; that means, the memory is not uniformly accessible by each processor, and

each can directly access its own memory also, but this memory is mapped to the

common global address space.

Cache coherence supports are usually not available, because each has its own cache also.

Rather there are some of the architecture which gives non uniform memory access cache

coherent protocol, but they are very inefficient system as there are large overheads.

So, rather directory based protocol which distinguishes between the uncoached shared

and the exclusive memory. So, for some part of the memory is known exclusive to

processor 1, some part of the memory is known from processor 1 to shared with other

processor, these directory-based protocols are given while storing the data in the

memory, for this type of systems. This is NUMA or Non-Uniform Memory Access

system.

(Refer Slide Time: 15:43)

The next variant is distributed memory distributed processor. So, if the memory given to

NUMA systems they are pointing to a common global address space, if they do not; that

means, they do not do that means, they are different memories given, and different

address spaces given to different processors we call it a multicomputer or a cluster and

this is really a distributed memory system.

If the distributed multiprocessors do not map to a same memory, they are called multi

computers; that means, multiple computers connected together through an interconnect

network switch.

It has multiple CPUs each one has its own local memory and local cache. Local

memories do not map to a single global memory; however, they are connected to a single

common file system through I O switch and internet and some data through an

interconnect network, they can share some data from one processor to other.

This is a scalable system because they are different computers and they are just

connected through a network switch; you can use even a simple gigabit network switch

which we use for your internet system. You can make an intranet and connect many

computers and say that these are multi computer system and actually can perform

distributed computing HPC computations using that system.

So, and you can increase the number of computers in that using higher end switches and

you can you have 10,000 or more computers connected together. This is a very scalable

system, and you can increase number of computers as much as possible. And one of the

ideas is called asymmetric multi computer; that means, there is a user who can talk to the

internet and through the internet he can access the front-end computer and the front-end

computer is connected with interconnection network, which is connected with many

other computers.

So, if any job is given it is given to the front-end computer, it launches it to the slave

computers attached to it. This is called an asymmetric multi computer. User can only log

on to the front-end computer and instruct it to run a parallel job at the back-end systems.

The front-end computer only needs to talk to the internet and user; therefore, it has an

updated operating system with all the functionalities. The back ends are only designed to

run some of the parallel applications which is launched by the front-end computer to

them. So, they do they have a primitive operating system they do not need to have even

graphic support, they are only supposed to do some of the arithmetic logical operations

as instructed by the front-end computer.

So, and each of this computer have their own memory and they are connected through

the internet connect network and front-end computer to a file system where each of the

computers data can be written down. But while operating, they are operating only on the

local memory given to them and they do not point to a single common address space and

this is an asymmetric multi computer.

The other one is a symmetric multi computer where the internet is connected to the

interconnection network and it can access any of the computers and these computers can

communicate with other computers and make a group among them and launch a job. So,

each node has functionalities and can shoot parallel job alongside this with them.

So, this is typically you see a very well developed cluster with a head node and slave

nodes, and if you have your own lab computer and connected through an internet

switch/ interconnection network which is basically an internet switch and then use

another computer to talk to the internet and you can access any of these computers log on

to any of these computers and launch a job. So, both these arrangements are quite well

used. This again taken from Quinn’s book.

(Refer Slide Time: 20:02)

The next one is a more modern and more developed cutting-edge application is a hybrid

HPC cluster. So, this is a distributed memory, distributed node system, but now inside

each node but inside each node there are multiple multiprocessors. So, each node is itself

a shared memory multiprocessor or UMA type of thing.

So, multiple computers are connected via high speed myrinet switches. Myrinet switches

are high speed network communication switches. Each computer has multiple processors

with shared memory connected through interconnectors or same bus.

So, if you see this is a scalable system it can connect near million processors. If you see

that there is user internet which you can connect to the switch Ethernet to a front-end

computer and then through the network switch, front end computer can launch job into

multiple computers in between them, and each computer is like today’s multi core

computer. If you buy a computer today it is at least dual core two processor; that means,

four core computers.

Similarly, if you go to each of this computer, they have multiple cores. So, each of the

computer is a multiprocessor also which is connected to a local memory, to the

computer, but this is a shared memory space for all the processors inside the computer.

And apart from the Ethernet, they are connected through myrinet which is a much faster

network connection and by this you can connect 10,000 computers like this and each

computer can have few hundred processors inside it, as a multi-processor system. So, by

this you can have a near million processor system.

And any of the; any of the HPC cluster is basically a hybrid HPC cluster with multi

computers where each computer is a multiprocessor. Each computer may be connected

with GPUs or coprocessor accelerators to give barrier speed.

And now, if you look to a leading supercomputer you will see that this multiprocessor

computer arrangement is there and each computer is connected with something like a

GPU or coprocessor. So, these are the most developed HPC architectures.

(Refer Slide Time: 22:53)

And now we also quickly look into GPUs, A GPU card or a Graphics Processing Unit

card, these cards were initially developed by NVIDIA for gaming purpose. In gaming

there are different operations done on different parts of the computer monitor and small

computing codes are attached with different locations of the monitor and they are taking

on the development or the progression of the game at different locations.

So, for that they developed something which has many cores (this is taken from

NVIDIAs CUDA guide) connected with this is the GPU card which is at large dynamic

RAM which is almost comparable with a CPU.

And many computing cores or computing units or small processors each is connected

with a very small control unit and very small cache ,compared to a CPU where there is a

large control unit and large cache and 4 or 8 arithmetic logical units are there, but here in

GPU there are in reality 1000s of computing cores, but with very small control unit and

very small cache.

So, it is something like a processor an inspired architecture .When a job is launched, it is

similar job which is executed by all the cores together, but this is a very simple job

which they can execute because the control unit as well as the register is small, they

cannot execute a complex and large job .It’s a simple small instruction which can go to

all the course and that can be executed together.

So, again that this GPU cannot work as standalone, it has to be connected via bridge to a

host CPU and we can see that if we can use GPUs efficiently we can get performance

much superior to a CPU, we can get even 100 times better performance than a very high

end CPU using a GPU because many computing cores are provided here.

The disadvantage is that as the cache and the control unit is small, we have to be very

careful about writing the program, and looking into the memory access during execution

of any instruction in the GPU.

(Refer Slide Time: 25:23)

So, these are some of the important computer architectures that we use for parallel

computing and now we come to something called cost of communication. We understand

that if we talk about a distributed memory system each computer has its own local

memory ,they have to ensure some continuity across the memory, one local memory

given to one processor may have to be accessed by another computer, but it cannot

access, it’s in a different computers memory and how can you influence the computer

and access the memory.

So, in case one computer needs to know something about a memory which is residing in

others computer, the other computer has to send the data and this computer has to receive

it. So, in a distributed memory system there is a requirement of frequent message passing

across the computers.

Some message which is in form of information or data has to be passed from one

computer to another and the other has to receive it and these distributed memory systems

are called message passing based distributed memory systems.

So, we see into the latency and overhead due to communication through the

interconnector switches, if message that goes it has its own latency because it will take

certain amount of time, it has some overheads also this will add to the total computing

time. So, the computer like we have seen for the cache for the sequential computer

architecture, memory RAM CPU and DRAM system that RAM’s latency is adding to the

performance of the degrading the performance of the CPU actually.

Similarly, for when they are connected through an interconnection network switch and

communicating across each other, the latency the communication time is adding up to

the computation time and the computing time is increasing

The three components of the communication time the first one is called startup time. The

startup time includes the time to prepare the message by adding header trailer, and error

correction information at the sending node and the time to execute the routing algorithm

and to establish an interface between the local node and the router and the time to

prepare the receiving node the receiving node must be ready for the message.

If all these times are added up this is the time to handle a message at the sending and

receiving nodes, that this message is ready now it will now the receiving nodes know

that this message will come through this from this computer to here and the in between

router is also ready for that. For any data transfer this startup time or t s is associated

with that, then any data for any data transfer first the message should be ready and the

startup time should be done to prepare the message.

(Refer Slide Time: 28:36)

The next one is (Refer Time: 28:35) per word transfer time. This is the time required for

movement of the whole data packet from the network. So, if there is some data that is

some information, some electric pulses which will go through certain net path and this

electric pulse will propagate through certain path and reach another location.

So, depending on the amount of data or the bandwidth how much data we are sending,

there is a time spent on sending the data and if bandwidth is r word per second, then time

to send one data packet is 1 by r. If r words are going in a second one word will go in 1

by r second that is per word data transfer. And the total time for the net data transfer if

we have a data size m that will be m / r.

Per hop time. If there are multiple nodes in the network, from one node to another node

there is a latency. So, there is a hop time say th and if there are l links that a per hop time

will be l*th. So, the total data transfer time in modern network per hop time is usually

much smaller than startup and data movement time.

(Refer Slide Time: 29:54)

The total data transfer time is given as for a data of size m over l links, start up time plus

m into the per word data transfer time m*tw p+ l*th. Each message of size m will take

this time to be transmitted over l links. So, startup time plus the per hop time into the

number of links as many links will be there more will be per hop time plus the message

size into the bandwidth into the per word data transfer time.

Now, if we do frequent data transfer, if we send if we may take a data and break it into

multiple components and send it different goes every time there will be a startup time.

So, the overall time will increase. So, if we pack entire data together or multiple data

together as a single message and try to send it the startup time will be reduced.

Similarly, there can be some other steps to reduce communication time one is

communicate in bulk send data in packets a smaller number of data transfer operations

will incur less startup operations.

Minimize the volume of the data. If you can avoid sending some of the data or if you the

total data size is same if you can reduce this to a smaller number, the per word data

transfer time will reduce. Minimize the distance between data transfer try to ensure the

data goes from one the neighboring processors so, that less hop links is there. So, that the

per hop data transfer is reduced.

So, this three are three very essential steps we should think while writing the parallel

algorithm in terms of in distributed memory that this way we can reduce the data transfer

overhead.

(Refer Slide Time: 31:52)

For shared memory machines there is a data access overhead not data transferred

overhead because data is actually not transferred except for some of the non uniform

memory access applications rather data is there is a common data space, where multiple

processors are trying to access the data and there are issues like cache coherency false

sharing etcetera. The components of communication time is basically the communication

time is basically the data access overhead time that one processor is waiting till other can

update its cache.

So, this communication time can be broken down as overhead due to cache access

initiating access to cache line of every contiguous data. Mapping of local data to global

address for NUMA machines that it is local data for each processor, but they map to a

global address this mapping can take some amount of time.

Will discuss about false sharing in detail when we discuss about shared memory systems.

Contention between the processor, same data many processors are trying to write, so,

there will be some sequentially in between them everybody cannot write at the same

place same location this contention will be there. Invalidate protocol for cache coherency

is if one is writing and the others will not be able to write the others right will be

invalidated. So, they have to wait to get their turn.

It can be observed that the communication time for shared memory machine which is

basically data access overhead, is also given as a constant plus a time multiplied by the

data size. So, in distributed memory, startup time is constant plus m* tw (data size into

the time based on the bandwidth). Similarly, in shared memory also the communication

time is a constant plus time multiplied with the data size.

So, this is extremely important to understand that there is a substantial amount of time

required for communication of data in parallel computing system. Especially for

distributed memory system this time can be very significantly large and can sometime

reduce the performance of the parallel program. So, we should be quite well aware of

this time and should follow the right steps to reduce the data communication overheads.

So, we will finish this part session now and we will continue with the discussion on

different classifications of parallel computing architecture which is Flynn’s taxonomy in

the next lecture.

