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MPI routines for parallel matrix solvers

Welcome to the class of High-Performance Computing for Scientists and Engineers and this is
the 3rd module of the course which is on MPI programming for distributed computing. We
have discussed about the preliminaries of MPI programming and we have also looked how
domain decomposition method can be utilized for parallelizing matrix solvers for Laplace or
Poisson equation type of problems using MPI and therefore, we understand that MPI has a

good applicability for parallelizing matrix solver algorithms.

So, in this particular lecture we will further explore MPI's applicability and we look into some
of the features little advanced from the basic features which you have looked at till the last few

classes.

This is kind of an intermediate MP1 ,not the most advanced features of MPI. However, we are
discussing some new features of MPI programming using which we can more efficiently
parallelize matrix computing programs and matrix solvers. So, the title is MPI routines for

parallel matrix solvers.
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CONCEPTS COVERED

» MPI routines for domain decomposition
» Creating customized communicators- Monte Carlo example

» Data decomposition for matrix solvers

We discussed MPI routines for domain decompositions. We will see some of the features of
MPI using which domain decomposition becomes easier to implement compared to the way
we have seen domain decomposition earlier. Especially when we have to do domain
decomposition in multiple dimensions. Earlier we have only done one dimensional domain
decomposition or when we have to do domain decomposition for more complex geometries
these features can be used. We have looked at the communicators, MPl communicator is
basically a topology combining all the processes working for a program and also defines the
inter connectivity across the processes.

So, a communicator is by default setup when we call MPI_init and this is the default
communicator. We can also create customized communicators, we can split the
communicators, we can take out some of the processes and form a new communicator. We will

see these communicators and we will take an example.

Now, this is not a matrix computing example, we will see a Monte Carlo programming example
for that. Monte Carlo is a probabilistic method applied to solve deterministic problems and we
will see how we can compute the value of pi using Monte Carlo method. If you remember
while discussing openMP we have shown you how to calculate the value of pi using numerical

integration.

Now, we will see how we can do it using Monte Carlo, but this is not a matrix computing

method. This is little shift from what we are discussing on matrix computing, but this will be a



good example and Monte Carlo type of simulations are abundantly used in different scientific
computing exercises like molecular mechanics simulation, stochastic model-based simulation
etcetera. So, this is a good exercise if we look into the Monte Carlo example, but our focus will
be how to see creation of customized communicators using MPI and then we will see a data

decomposition method for matrix solver.

What we are doing using domain decomposition is basically decomposing the domain into
multiple sub domains and solving some matrices there. This is more of a task decomposition.
So, you are breaking down the main task into multiple smaller tasks when solving them.

But, if we try to do a data decomposition; that means, the matrix vector multiplication will be
itself decomposed and given to multiple processes, which | have done when we have looked
into threaded parallelism using openMP for matrix solvers or matrix vector products, but we
will see how that can be done using MPI here.
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MPI is large and inclusive
L]

MPI has a large number of features which can be useful in various libraries and
applications. These functions add flexibility (datatypes), robustness (non-blocking
send/receive), efficiency (“ready” mode), modularity (groups, communicators), or
convenience (collective operations, topologies).

However, with a small set of functions, any algorithm can be parallelized using MPI. These six functions
are:
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Here, we will see how some of the other features can be utilized for efficient
parallelization of matrix solvers (including domain decomposition)

So, we have earlier discussed that MPI is small as well as large. Quote like this is given in the
canonical textbook for MPI William Groff’s MPI book that MPI is small in a sense there are
only six functions with which we can write any MPI program. When we have looked into the
previous domain decomposition method, we have used 7 MPI clauses apart from the reduction
clause .All belongs to these six clauses even reduction can be replaced by send receive type of

clauses.



So, there are few basic MPI calls by which you can parallelize any algorithm. However, there
are a large number of features which can be used for different libraries and applications using
MPI. These are apart from the six basic MPI calls which are basically, MPI_init, Comm_size,
rank send and receive, finalize. With this you can parallelize everything, but apart from that

there are other MPI features or other MPI functions.

Some of which we have looked earlier. MPI_gather, MPI1_Scatterv, etcetera which we can use
for simplicity in programming as well as for efficient MPI programming or efficient
parallelization. These functions sometimes add flexibility in terms of data types.

They add robustness like you can have non-blocking send receive buffers send receive they are
efficient in many cases because they use the grid topology in a more efficient way and talks to
compiler and operating system better .They sometimes give you modularity which we can
group make groups and make communicators out of it and for collective operations. So, they
are convenient for writing the program as well as they are efficient in terms of the parallel
overheads. That is why you call MPI large and inclusive; a large number of features exist
within MPI. Apart from these six MPI functions with which you can parallelize any program,
if you want to do it with more flexibility, convenience, simplicity in programming , less
overhead if you want to ensure that some of the wait times and again overheads are smaller,
then you can use some other features and these features precisely are what we will try to discuss

in today’s class.

At the end of today’s class when we will discuss matrix vector product parallelization .1 will
show you an example where a sub subset of these six functions are used. Another feature is
reusability, | mean what you have written in 30 lines of program is compressed to 1 or 2 lines
of coding and also this is efficient in terms of overhead. So, these are the advantages. For using
the other features either you have to be an expert or you should have good experience so that
you know which features have to be called upon . With advanced MPI more features are coming

you need to look into a MPI manual and find out the feature which will suit there.

Here we will see some of these features which are part of the large and inclusive list of MPI
functions that can be utilized for efficient parallelization of matrix solvers. So, we will look
into domain decomposition-based matrix solvers first and then we look into data

decomposition-based matrix solvers.
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Solving Poisson problem using iterative method- domain decomposition
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Now, each domain has to assigned to a process of
unique rank

These processes communicate among themselve;
following a defined pattern

So, we look into a Poisson problem which is Laplacian of a function say Laplacian of T is equal
to a source term in the right-hand side and that will be solved using numerical methods. So,
use a finite difference method. These are the finite difference grid points and form the discrete
difference equations for each of the points see. Then we will use an iterative method to solve
it. Say for example, we are using Jacobi iterations to solve it. So, this is the Jacobi iteration
step and now we will use domain decomposition for this. We have discussed how we can use

domain decomposition for matrix solver problems.

So, instead of writing it in matrix form we have written it in indicial form. We will use a domain
decomposition method for this. So, the entire domain is divided into three sub domains and
black points are the internal points, gray points are the boundary points and we will solve for

the black points in each of the sub domains.

Now, we can see the inter domain boundary points for solving this one point resides in the
neighboring sub domain. So, we need data exchange across the processors. Dynamic exchange
of boundary condition among the sub domains will be required and that will require

overlapping of the domains. These things we have discussed in the last few classes.

So, this will be an overlap domain and inside this domain we will solve only for the internal
points. The outer layer points will come as boundary conditions and they are the values which
are copied from the last updated solution of the neighboring sub domains and this is everything.

We will follow a Jacobi step here.



While solving these different processors will be responsible for solving different parts of the
sub domain. So, we have to assign each domain to a process with a unique rank. So, for each
of the sub domains we will assign a process and there will be a rank for this process. This is in

a nutshell what we have done earlier also while discussing domain decomposition.

Now, in this class we will bring little more complexity in the problem and see how MPI features
can help us. This process will also communicate among themselves following a defined pattern
and this is important. Say rank 0 will communicate with rank 1 because it has overlapped with

rank 1. Rank 2 will communicate with 1, 2 is never going to communicate with 0.

So, there is a definite pattern by which the processors will communicate among themselves and
which data will be communicated to each side where it will be mapped that also follows a

pattern well.
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Two-dimensional domain decomposition- creating topology
A two-dimensional Cartesian decomposition.

This decomposition can be created by the following routine:

int my rank,my cart_rank;

MPI_Comm comm20;
| int dims(ndims),coord(ndims);
__by [1A1] [E81) int isoperiodic(ndims];

int reorder;

Lval [ uaj] "J' [w pres

isoperiodic(0] = isoperiodic(l) = 0; // set periodicity
reorder = |;

MPI_Cart_create(NPI_COMM WORLD, ndims, dims, isoperiodic, reorder, &comm2D):

comm2d is the new communicator associated with the Cartesian topology defined by the first five
arguments,

ndim: no. decomposition dimensions, dims- domains in each direction, isoperiodic- true for
periodic b.c, last process talks to first process in each direction, reorder: reset the ranks for better
communication

Now, if we look into a two-dimensional domain decomposition problem, so, instead of
decomposing the domain into one direction we decompose it into both directions. So, it is a
two-dimensional domain decomposition and we get multiple sub domains. Now, each of these
sub domains can be identified by an index in the x direction by an index in the y direction and
similarly it will be mapped to the processes and the communication pattern will be little more

complex than the previous one.



For example, this sub domain (1, 1) will communicate with the neighboring sub domains, but
will not communicate with the further sub domain and these neighboring sub domains are in

both x and both y directions. This decomposition can be created using the following routine.

So, earlier when we have created the decomposition, we simply divided the number of points
by the number of sub processes and created points in x direction by number of processes and

created chunks of points in x direction and created different sub domains.

But here we have to create sub domains in different dimensions and this can be created by MPI
function. So, early you remember that we took the number of points, found out the remainder,
distributed in different processes, assigned each of the sub domains to each of the process, so
on; this we have done while doing the domain decomposition through a simple ¢ program. But
we can directly use an MPI feature which is MPI_Cart_create for doing that. When we do
MPI_Cart_create ,the main geometry is divided into multiple sub domains and each sub domain
gets associated with one processor. New sets of processes are mapped on different sub

domains, and we create a new communicator comm2D.

MPI_COMM_WORLD was our initial communicator, but we created a new communicator
comm2D. Why do we create a new communicator? Because this new communicator uses a

topology like this, where it knows (2, 1) will communicate with (2, 2); (3, 1);( 1, 1) processes.

So, the communication pattern is also known to the communicator ,not only is it only groups
all the processes, but it also keeps a track of the communication pattern or it keeps a track of
which process is neighbor to which of the processes. So, a new communicator is created. Now,
we will see this new communicator is basically a communicator which is mapping of the sub
domains. So, it divides the domain into multiple sub domains and maps them to respective

processes.

This entire set is stored in this communicator. So, the output of cart create is that we get a sub
domain divided geometry with the mapping itself. Now, this output is comm2D the new
communicator and the input is old communicator. ndims tells us that in how many dimensions

we are doing the domain decomposition.

Here we are doing in 2 dimensions. So, what are the number of blocks in x direction, what are

the number of blocks in y direction? 4 and 3; these are the input of dims.



Then there is something called isoperiodic. This is also important. Many times we use a
periodic boundary condition. Say we have a circular geometry. In theta direction there is a
periodicity. So, what goes to theta O that is the same as theta 360 degree. Similarly, sometimes
you use periodic boundary conditions there in 2D also, Cartesian geometry also; in that case 3,
1s neighbor will be 0, 1. So, there will be a data exchange between (3, 1) to (0, 1).

If we set isoperiodic to be O then there is no periodicity that means, these are physical
boundaries. It can be done in both x and both y. If we set isperiodic in any of the directions to
be 1, there will be a periodicity. (2, 0) will be mapped as an if there is a periodicity in y direction

the 0 line will be mapped as a neighbor of the 2 line.

So, there will be another set of communication across 0 and 2 by which we can also control
that. There is another term called reorder. Reorder reorders the ranks of the processes. Earlier
the processors ranks are obtained by MPI comm rank whatever they are, but once you create
this then different processes say (1, 1) has a neighbor (1, 0),( 2, 1),( 0, 1), (1, 2). So, if based
on the hardware of the system if they can be mapped well so that (1, 1) and (1, 2) goes to

neighboring processors, neighboring physical processors data transfer will be faster.

So, keeping them in mind if we put reorder is equal to 1, the ranks are reassigned, so that
processes are considered to be mapped with the sub domains and the ranks of the processes are

so arranged that the communication is faster.

So, what is taken away from this entire exercise is distributing into multiple sub domains,
giving each sub domain to different processes and looking into the communication pattern
between them, finding out who is a neighbor of what; this entire exercise is done by one feature

one function MPI_Cart_create.

This is not part of the elementary MPI function calls, but if we can call them, we can very
easily and simply distribute the geometry into multiple sub domains and map them on to the

right processes.
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Topology for domain decomposition

In the previous topology, each process needs to know the following:

a: what is the location of the subdomain associated with it—
This can be finding the finding the dinate of the subd:
of this domain in the new communicator can be found :

igned to this process and subsequently the rank

* find my rdinates in the cartesian communicator group *
MPI_Cart coords(comm2D, my rank, ndims, coord);

* use my coords to find my rank in garteaian group*
MPI_Cart_rank(comm2D, coord, &my cart rank);

MPI_Cart_get also returns the inf ion on the subd igned to the process: MPI_CART_GET(com

maxdims, dims, periods, coords)

b: What are the locations of the neighbours
with which the present processor will exchange data — 1 K 1t 11 S

This is obtained through MPI_Cart_shift
nt MPI_Cart_shift(MP!.Comm comm, it direction, int despl, int #src, int sdest)
Finding neighbour with shift 1 in x direction

This is called a topology or a virtual topology. We have created a new communicator and how
these processes are virtually connected with these neighboring processes combining the
interconnected is called a virtual topology. So, when we define MPI_Cart_create and new

communicator we define a new topology.

Now, in the previous topology we have these different processes and their mappings and the
neighboring processes. The communicator has the entire map of the sub domains and their
mapping into the processes. Now, each process needs to be aware of certain facts for executing
the program. First is who am I; what is the rank of the process, what is the location of the

domain assigned to that process.

So, what is the location of the sub domain associated with it? This can be done by finding the
coordinate of the sub domain assigned to the process and subsequently, the rank of this domain
within the new communicator. Like, using MPI_Cart_coords we give the communicator id,
the new communicator name , the rank of the process within the old communicator and
coordinates of the sub domain can be found out. So, using the rank of the process in the old
communicator and the new communicator id, the coordinate of each of the processes can be
found out. Using this coordinate and the new communicator one can find out what is the rank
of the process in the new reordering. In the new communicator what is the rank of this particular

process and this rank will be given as my_cart_rank.



So, by my_cart_rank one can identify a particular process mapped on the particular subdomain
and what is its location. Also, my_Cart_get can return the information on the sub domain, if
MPI_Cart_create is executed then the topology has been created. Now, if you get my
MPI_Cart_get then each processor knows where it lies with respect to the topology and what

is the overall topology that goes to each of the processors.

Now, next important part will be what are the locations of the neighbors, with which the present
processor can exchange data. So, each processor will exchange data with the neighbors, what
is the location? That can be obtained through MPI1_Cart_shift. What is MPI_Cart_shift? That
in each direction will be the displacement of 1; so, in x direction displacement of 1. So, what
is the location of the processor and what is its rank with plus 1 coordinate and minus 1

coordinate? So, we can find out that say for processor (1, 1), what is its left and right neighbor.

Similarly, if we put the direction to be y or the second direction and put a displacement 1, we
can find out what are the rank of the processors, what is the process we are looking into and
what are the destinations where the data should go in plus y minus y direction. So, using
MPI_Cart_shift a processor can know what its neighbors are. So, with this information

available it now becomes simple to write down the domain decomposition program.

So, the creation of the topology domain distribution of the domain into multiple sub domains
has already been taken care of by MPI_Cart_create. Now, with these functions you can
distribute into you it is already distributed to multiple processors. Each processor can know
what is its coordinate, what is its rank and what are the ranks of the neighboring processor, so

that it can do data exchange.
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Data transfer across processors

1. Boundary blocks has less data transfer if not periodic boundary present.
This can be done by using MPI_Proc_Null:
ne. MPI_PROC NULL) then
call MPI_SEND
endif
2. Bottleneck in datatransfer is to avoided either by using non-blocking or buffered send calls or by

odd-even ordering of send receive operations.

Pairing of sedning and receiving may be difficult for complex grids. An alternative is to use the MPI
routine MPI_Sendrecv. This routine allows you to send and receive data without worrying about

receives from the process above (or right) it.
MPI_Sendrecv( xlocal(maxn/size], maxn, MPI_DOUBLE, up_nbr, 0,

xlocal (maxn/size+!], maxn, MPI_DOUBLE, up nbr, U,
MP1_colM WORLD, Gstatus );

But another important thing is that in case the geometry is complex it is difficult to use simple
MPI programs and write your own algorithm to do domain decomposition and the mapping.
These types of functions are very useful then. So, data transfer across the processors is the next
important part. First you do domain decomposition. Assign different processes to different sub

domains and then you have to write the solver and do data transfer across the processes.

Here you know the source and destination you got from MPI_Cart_shift and using that for data
transfer. Now, in case the boundary is not periodic boundary then the destination is not found
out. There is nothing in the x direction for the last boundary last sub domain. So, then the data
transfer can be done using MPI_Proc_Null that if you found that there is no process after that
in x direction then that the id will be MP1_Proc_Null.

In case the source or destination is not MPI_Proc_Null, then only MPI send and receive will
work. So, if nothing is found that rank will be given as MPI_Proc_Null. Bottleneck of data
transfer can be avoided by non-blocking or buffer send receive or odd even ordering of send

receive operations.

Now, if the geometry is complex, if you have a complex grid it might be difficult to find out
the exact odd even number. There may not be odd even numbers. The mapping can be done in
a very unstructured manner. So, one alternative is using buffers, but there are certain issues
while using buffers because send data goes to a buffer and waits for the right receive, but other

alternative is to use a MPI routine called MPI sendrecv.This routine at one instance launches



sending from a call to a processor and also ask the processor to receive data from this other one
because whenever there is a domain overlap one domain is sending data to other the other
domain is also sending back data to here. So, a sent boundary is also a boundary through which
sending is happening from one processor to another through that the processor which is sending

he is also receiving something.

So, send receive does not put a deadlock due to lack of buffering, rather launches the send and
receive process across the processors at one instance. This is a send receive call through which
data can be sent from one particular processor to the up neighbor and as well as data can be
received from the processor from the up-neighbor processor to this particular processor. So,

this is one way out here to avoid bottling neck that use a combined send receive.
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Creating communicators in MPI

MPI_Comm_World is the default communicator in MPI. However, a group of processes may be separately
combined as a new topology and a new communicator can be formed.

This can be done by either (i) forming a group of processors by MPI_Group_excl and then bringing all them intg
a new communicator as MPI_Comm_Create
Or (i) Splitting MPI_COMM_World into multiple communicators by MPI_Comm_Split

Next important part will be creating communicators in MPI. MP1_comm_world is the default
communicator in MPI. However, a group of processes may be separately taken out and
combined to form a new topology. A topology means the collection of the processes and the
interconnectivity among them and a topology is defined within a communicator. So, a new

communicator can be formed. MPI_comm_world is the default communicator.

However, from MPI_comm_world you can separate out some processes and create a new
topology and a new communicator. This can be done by forming a group of processors by
MPI1_Group_excl .Some of the processors will be excluded from the original number of

processors and a new group will be formed and then a communicator is created within the new



group using MPI_Comm_Create.Also we can split the original total number of processors and
build up multiple communicators within the main MPI_comm_world; this is done using
MPI_Comm_Split.

(Refer Slide Time: 28:13)

MPI_Comm_Create

There is a parallel job for which a function is called by all processes. We assign one process as a server
which will return the function to other processes, while other process will work as clients and in
parallel compute the job.

A unit square is chosen and randomly few points are placed into that.
The points inside the circle are noted.

Now, if the number of points are large, ratio of the area of the circle to the area
of the square is obtained as ratio of the points inside the circle (n,;,,) by total
number of points n,. l.e., N

7 = f el

Ml

So, as many processors can compute for the points, locations of the
points may come as set of two random numbers through a single
processor random number generator. That will be the server here.

Say there is one job which is done in parallel by multiple processes. Now, all of this process
calls a function. This function is serially computed or one particular process can give this
function. This function is not a very compute intensive job, but there is only one process who
can do this function. So, all the other processes will work as clients of this process and it will
return the value to the other processes. Whereas, the other processes will be working in parallel
for this particular job and do the parallel computing. The example can be Monte Carlo
simulation. Monte Carlo is famous for casinos. People go there. There are a lot of risks involved

in waiting in casinos.

So, these people came up with some ideas involving taking risks and probability. This Monte
Carlo method is based on a probabilistic method for calculating a definite answer. These
probabilistic methods for calculating deterministic solutions are often named as Monte Carlo

simulations. One example is calculating pi,this is like a dart board playing.

You have a square dart board and you throw darts on it and then these dots randomly hit the
board. Then calculate what are the number of the darts inside a unit circle within that and this
number divided by the number of the total dots represents the area of the circle divided by the

area of the square in case the number of throws is large.



So, units square is chosen and few points are placed into that. The points inside the circle are
noted. Then if the number of the points are large, it can be shown that the ratio of the area of
the circle to the area of the square is obtained as the number of the points inside the circle by
the total number of points. That gives us that pi is equal to 4 times the number of the points
inside the circle by the total number of points; provided the total number of points is large

enough.

So, one has to do computing over a large number of points and these points come as the random
numbers within 0 to 1; with both x and y coordinates. Then find out what are the number of
points inside the circle by measuring the distance from the center and do this calculation. The
location of the points may come as a set of two random numbers. As many processors will be
there the total number will be large. Again, generation of random numbers in parallel is
difficult, as sometimes they give copies of the same number. So, even if there are multiple
throws all throws by different processors come to the same location. So, it is usually done that
a single processor is asked to generate the random numbers, this acts as the random number

server and the other processes gets the information out of it.
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MPI_Comm_Create (cont.)

MPI_Comm world, workers; < 1. Two processor groups are defined

MPI_Group|world group, worker group; ‘ 2. Processor group “world_group” is formed from
v’»,——

ek default communicator MPI_COMM_WORLD
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1-.,,,‘,_}(; = MPI_COMM WORLD: \ 3. The last rank process is identified as server and

MP1_Comm size(world, énumprocs); denoted rank(0
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So, we have to create a new communicator with the processes with which we will calculate the
value of pi and there will be one process which is taken out that will work as the server process

and that is done in the following way. We first create two processor groups: world group and



worker group. These are the processor groups. They are not communicated, not topologies,

they are simply processor groups.

What is the difference between a communicator or topology or the processor group? Processor
groups only have a defined group of processors defined. When | create a communicator,
topology is created which considers that these processors are now connected to do a job

concurrently.

So, the interconnection between the process is a part of the communicator, but not the part of
the processor group. So, you create two processor groups. Now, what is coming from the
MPI_COMM_WORLD this communicator is named as world and these processors are grouped
into world_group processor group. From world_group, now the last rank processor numprocs
- 1, is identified as a server. It is given as a rank 0 and this rank 0 is excluded from world_group
and the new group is created as in worker_group. Within the worker_group, so, the new group
worker_group is formed. Within the worker_group MPI_Comm_create is given and a new
communicator named workers is created. We create a new communicator named workers out

of this worker_group.

Now, if we are doing random number processing the server that is getting requests from the
other processes and generating a random number and sending the random number back to the

source the process which has sent it .
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MPI_Comm_Create Monte-carlo example (cont.)

Processes communicate with server (process 0)
* through default communicator
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The other processors send requests to the server and then they get the random number from the
server and puts it as x y axis, sees that whether this is within the radius is less than 1 then
considers it within the circle otherwise outside the circle. Then use all reduce to find out the
total number of points inside the circle and outside the circle and finally, pi is calculated.

Now, you can see that when the processors in the worker_group communicate with the server
they are using the default communicator MPI_COMM_WORLD. When they are receiving
from the server, they are also using MPI_COMM_WORLD. When they are finding rank within
the new communicator, they are using the new communicator id workers. When the client
processors are communicating among themselves, they are using the new communicator
worker. So, two different communicators are created to ensure two different working patterns.
We do not want to bring the server into allreduce. So, we have excluded it and ask the other
processors to do it.

So, using simple if else look this could have been done, but with MPI send MPI receive type
of comments, it will be more complex in terms of programming. As well this implementation

is more efficient.
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Data parallelization for matrix solvers

Domain decomposition is a functional parallelization method, where different tasks associated with
different domains are designated as tasks to processors

However, a data parallel model can also be developed, where different rows of matrix will be given to
different processors for computation. Though it will calculate for a single matrix without decomposing
it into multiple matrices for the subdomains.

Data parallelization can work on the matrix-vector products, which has computational complexity of
O[V?). Also, the dot products (vector-vector) inner products can be parallelized but may not give goog
scalability as computation is small O(V).

Some parameters obtained from distributed computing are to be gathered or reduced for calcul,
collective communications are mostly sought for.

Now, we come to the last part of the discussion quickly. We will go through data parallelization
for matrix solvers. Earlier we have looked into task parallelization or domain decomposition.

Domain decomposition is a functional parallelization where different tasks associated with



different domains are designated as tasks to different processors. Each processor is doing a task

and this is coming from the domain decomposition.

However, a data parallel model can be developed. Well instead of breaking down the geometry
into multiple sub domains and making small matrices out of each sub domain we ask we assign
different rows of the matrix to different processors and so, we do not decompose the problem
domain into multiple sub domains. We have the main matrix. We have a large matrix. We
decompose only the rows of the matrix into small rows of the matrices, but do not decompose
into sub matrices. We only decompose the data and give different rows to different processors

to work.

This is simpler in terms of the implementation and in terms of iterations also maybe because

we do not need to exchange data across the boundaries and reiterate it.

Data communication is also less here. Data parallelization can work for matrix vector products,
which is complexity of the order of n?. We have seen that. The matrix vector product is part of
any iterative matrix solver. So, that part can be taken care of by data parallelization. The dot
products or vector products can be parallelized, but we have seen in openMP programming that
vector dot product parallelization is not very computationally efficient.

In case the number of points in the vector is small then we do not need to do the dot product
parallelization. It is not very worthy, but this part for a large matrix can be done, but for medium

size matrix, the matrix vector product parallelization is also efficient.

Some parameters obtained from distributed computing are to be gathered or reduced for the
computation. Like, if you are doing dot product or if you are doing matrix vector product
different processors generating different parts of the vector. So, they can be communicated by
using collective communications. You can use send receive type of operations. We will show

some examples, but collective communications are better.
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Data parallelization for conjugate gradient solvers

The algorthm s cetailed below for solving Ax = b where A IS a real, symmetnc, positive-definite matrix

1= b - AX))
Poi=n Matrix vector multiplication,
k=0 first one can be avoided if
repeat x0=0
'
[ ' T
p.Ap)
Xiey ) =X Py

Phet o= Iy ""‘API
if vy, is suffigiently small, then exit loop

"L'A-l
Bi:

I'Il'i
Pis1 = Frer + Bipy
ki=k+1

end repeat
T'he result is x;.,

So, we see a conjugate gradient solver here. We can see that it starts with a guess and then
calculates the value alpha. While calculating the value alpha, (b, r ,P, X are vectors) there is a
matrix vector multiplication, this multiplication is dotted with a vector and there are vector

multiplication, dot products.

So, you can see that there are three matrix vector multiplications. One is done only at the first
time at the initial guess, but if the initial guess is 0, we do not need to do it. The other is another

matrix vector multiplication which is used twice. There are many vector dot products.
(Refer Slide Time: 38:50)

Data parallelization for conjugate gradient solvers

The algorithm s detalled below for solving Ax = b where A IS a real, symmetnc, positive-definite matrix

ry:=b~- Axg 1. Assign part of the matrix to different processors
Poi=N 2. Broadcast the intial/updated vector to all processors
k=0 3. Each processor calculate its local matrix-vector

repeat multiplication
T % @ aal [(4m o a o ]| 4P)
rr 2 poolAP)
a = — e || 1y | | (4P), Toun 4 B | £
P Ap,
7 a. g | |(aP) a 4 a a4
Xki| 2= X+ Py 2
Pet := 1y~ kA, Proc-1 G Proc-/
if i,y is sufficiently small, then exit loop 4. Find local pAp dot produﬂ-umq m-th ter
'Ar w1 Fhel Ple ‘
'
rfr.
Pus1 = 100 + APy Proc-1 .
ki=k+1 5. Gather all the local sums to finy

end repeat 6. Communicate ratio to all p

The result is x;.



Now, specially the matrix vector multiplication is computationally costly. So, we need to
parallelize it. What will we do? Assign part of the matrix to different processors. Broadcast the

initial or updated vector to all the processors.

So, take the vector and broadcast it to all the processors because vector is small, broadcasting
it will not be difficult. Matrix is large. So, take parts of the matrix and give it to different
processors. Each processor calculates local matrix vector multiplication, like Processor 1

calculates matrix vector multiplication up to m rows.

Processor 2 will take from m +1 row and calculate, so on and Processor L will take from Ith
row and calculate up to kth row matrix vector multiplication. Each processor is doing a part of
the matrix vector taking a few rows of the matrix and getting the matrix vector multiplication.

They have the entire vector and few rows of the matrix available to them.

So, they are getting few rows of the matrix vector multiplication. Finally, p” Ap product is
required. So, in each of the local vectors you take the p vector and get the local dot product .
Then this part of the dot product is calculated in all the vectors. Gather all the local sums to
find the total dot because finally, we need a dot product out of it. We do not need the matrix
vector, but we need the dot product. Because p is a small matrix we can distribute into multiple
processes and or keep the copy of p to all the processors and then get the local dot product also.

It is not much communication here.

Finally, you get the local sum and, you have to calculate the ratios in one processor and then it

has to be communicated to all the processors.
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Data parallelization for conjugate gradient solvers- cont

rg:=b - Axy
Poi=1
k:=0
repeat To be communicated to
rI r master node for
= == sequential calculation
P/
e a Xk b agp; i (
| Communicate
| sy o= 1 = g Ap, Y
| to all slave " k .
‘ SRR ifre urmfﬁru'mly small, then exit loop
| master R To be communicated to
Py =
T master node for
Ti Tk Already stored
sequential calculation
Piet =Tt + APy
ki=k+1
end repeat
The result is x;.,,

We can see that these dot products have to be communicated to master nodes for sequential
computing . So, instead of communicating it you can take the entire vector to the master node

and the master node can do it itself also.

But only this Ap product is a computationally complex one that has to be parallelized; there is
no other way of that. Then once these computations are done then alpha and beta are to be
informed to all slave nodes or all other nodes for the rest of communication because alpha and
beta will be used for local calculation in all the nodes. This can be calculated in a global array
in the master node. Instead of communicating many times only Ap can be calculated in slave
nodes and finally, using gather the Ap can be calculated by the master and the master node or
one of the nodes can take care of the rest of the computing because these are computing only
on a vector; they are small computing. The only computationally complex part is this matrix
vector multiplication which has to be parallelized.
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Matrix-vector product- data parallel code
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Code developed by Mr. Debajyoti Kumar, Research Scholar, CCDS, IIE Kharagpur

So, you will see a quick example of matrix vector multiplication parallelization. The vector is
broadcasted to multiple processors. Now, the matrix is read or obtained from some other

source; this matrix is.

So, the part of the matrix has to be given to different processors. So, first is the vector, the
number of rows n is broadcasted to all the processors. The vector b is also broadcasted to all
the processor because all the processor needs the entire vector, only a few rows of matrix is
needed.

Then we find out how many rows and from which row each processor will start. We send the
number of rows and the offset from which each processor will get from the master node which
has the entire matrix to the other processors. Then we send the row elements from which offset
that the rows will start and all the rows like after 5th row next three rows will go to Processor
2.

Similarly, we set the location of the first row offset and the number of the rows and the size of
the data that will go. Similarly, the processors will receive the row and the offset and the matrix

the actual matrix from this processor.

Now, this can be replaced by Scatterv. Instead of using send receive this becomes a little

complex we can efficiently use Scatterv here. Here we can do this. So, it will receive this



receive also. This will come in the part of Scatterv. It receives from the master node that these

many rows will come.

Then each process will do its own matrix vector calculation and there are barriers for
synchronization and the product vector you are using a single call gatherv where this product
vector is coming to the master processor and then master processor if it wants to do any dot or

any other calculation can do it using Gatherv.

So, instead of using receive and send from each processor to the master processor, we can use
a collective call Gatherv and collect the entire vector. What is the difficulty in doing a send

receive operation here ,that there is a sent from the master node to all.

There are three sends from the master node to all the processor and it follows this send is from
master node to ith node. So, if this send operation is happening over a loop, so, 1 by 1 master
node is sending data to all the processors. There is some sequentiality here which can be
avoided if we use collective communication. So, collecting communications is very good. Only

you have to remember more functions or look for more functions and use it efficiently.

Here just by one call we remove the sequentiality in receiving by master node and not looking
into the offset’s displacements, difference and receive etcetera ;collecting all the vectors and
putting it into the master node. So, gatherv is an efficient communication here. This is
developed by one of the research scholars from Center for Computational Data Science IIT

Kharagpur, Mr. Debajyoti Kumar.
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» Using MP! by William Gropp, Ewing Lusk and Anthony Skjellum

» Parallel Programming in C with MPI and OpenMP by Quinn
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1. Intermediate MPI functions for domain decomposition discussed
2. Introduction to communicator creation given with an example of Mont Carlo problem

3. Data parallelism for conjugate gradient method shown

Well, we come to the end of MPI discussions. We have discussed some intermediate functions
for MPI for domain decomposition methods. Given an introduction to communicator creation
and shown an example of Monte Carlo pi simulation problem here, looked into data parallelism
for conjugate gradient method and showed how matrix vector products can be parallelized
using MPI. We also see that using the advanced features or intermediate features helps us to

do with more simplicity as well as more efficiently, especially data parallelism type of tasks.



