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Hello everybody, we are discussing Domain Decomposition based parallelization of Jacobi 

solver in the course High Performance Computing for Scientists and Engineers. In the previous 

two classes we have looked into domain basic ideas of implementing domain decomposition 

for Jacobi solver and then we took a sequential code for Jacobi solver or a single processor 

Jacobi solver C code. 

We identified the steps, where we can put right constructs for doing domain decomposition and 

developed a template for the parallel Jacobi solver. In this particular lecture we will try to 

develop our first domain decomposition based parallel solver which is solving Laplace 

equation using Jacobi solver. 
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So, we will look into the parallelization of the Jacobi code here, and then we will also see the 

performance of the parallel code that we have developed here. 
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We are solving a Laplacian equation in a Cartesian geometry in matrix form. The matrix has 

been obtained using a finite difference method and we are using Jacobi iterative methods for 

solving that.  

Now, if you  observe you can find that we have considered a Cartesian geometry which is the 

simplest geometry in the 2D plane, Cartesian square geometry. We have considered Laplace 

equation which is again the simplest second order equation in partial differential equations and 

we are looking into Jacobi solver which is again one of the most simple forms of the basic 

iterative solvers.  

So, you try to keep everything simple, but the same methodology which we are discussing here, 

domain decomposition based parallelization for problems involving matrix equation, over 

spatial domains; the same methodology can be applied for complex problems for non-Cartesian 

geometry, for non-square complex geometries, for problems involving higher order differential 

equations, more complex even nonlinear differential equation,where some linearization has 

been applied.Say for example, Navier–Stokes equation use the same method and also more 

efficient solvers like conjugate gradient bi CG we can use the same method. 

Actually for those types of problems you do high performance computing, you do not do high 

performance computing for very simple problems where you can easily get analytical solutions. 

You do high performance computing for much complex problems, but in the similar 

methodology you can parallelize the solver required to solve that particular complex problem 



in complex geometry using domain decomposition method.So, if you understand the basic 

steps for parallelization of Jacobi solver in Cartesian square geometry for Laplace equation 

which we are discussing here you can take it and apply it for complex problems, well.  

We start with the Jacobi solver MPI code. The first thing that comes here is that you have to 

include a MPI header file mpi.h. ,for MPI programming.  

The indices for finite difference comes in i, j; from i, j it has to be converted into a 1D vector 

for writing a matrix equation. So, this is the pointer function which gives the ID vector from 

the i,j index ok. 

So, in the main function first there will be MPI calls.What are the MPI calls? MPI_init (MPI 

has to be initialized), MPI_comm_size that will tell me that, what is the total number of 

processors working here. MPI_comm_rank ,what is the rank of each processor . So, myrank 

will start from 0 and end up to nproc - 1. nproc is the total number of processors. 

For different processors there will be different myrank; for the first processor myrank is 0, for 

the last processor myrank is nproc - 1. The domain length in both and X and Y is 1, the number 

of steps in X and Y that will be obtained from the user. 

So, the master processor whose myrank is 0, will read it from the user that what is the number 

of steps in X and number of steps in Y. We kept it variable because we want to do certain tests, 

we want to change the problem size, we want to change the number of points and see how the 

solutions are coming, how much time it is taking. As many steps as will take in X and Y 

direction Δx and Δy will be small and will get a more accurate solution.Then the number of 

steps in X and Y which has been read by the master processor this number will be informed to 

others by Bcast. MPI_Bcast number of steps is an integer of size 1, it has been read by processor 

myrank = 0. So, he knows this the value of the number of steps in X and he will send it to the 

other processors using broadcast similarly num steps in Y will be sent to the other 

processors.Each processor will calculate the step size which is domain length by number of 

steps in X, domain length by number of steps in Y and the coefficients. So, there can be one 

question that, this is the information which is obtained by the zeroth processor it is sharing with 

the other processors.  



Why are all the processors doing this calculation? This particular calculation is being done by 

all the processors. It could have been done by a master processor or rank 0 processor who 

already knows these numbers and then he can broadcast it to all the other processors. 

Answer is broadcast is a communication operation, so it is costlier than calculation, and if 

myrank 0 is doing the calculation , then the other processor would have been sitting ideal there.  

So, you want to reduce communication also we want to see that all the professors are doing 

nearly the same work. Therefore, the essentially sequential part is reading from the processor 

which will be done by one processor and sent to the others, but this will be done by all the 

processors. 
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Now, we have to do load balancing and we have to map it to the right processors. This problem 

we have seen earlier, we consider a 1D domain decomposition that there are 13 steps. We have 

calculated in how many steps the problem is broken. So, in X direction there are 13 steps and 

we use three processors.  

So, the first processor will get five, the next processor will get four, the next processor will get 

four steps. It is a domain decomposed distribution,and these are the steps in processor 1,  

processor 2, processor 3. Now, the overlaps will be there in order to give the right boundary 

condition.There will be overlap of 6 with processor 1; the red ones are the overlap.Wwe have 

discussed overlaps and load balancing in previous lectures. 



Now, we are allowing one cell overlap among all the domains. So, how many points are shared 

across the domains? If we see processor 1 and processor 2, 6 is in processor 2 which is a hello 

or ghost layer in processor 1; 5 in processor 1 is an internal step in processor 1 which is a hello 

layer in processor 2.  

What are the points? We are solving for the grid points, these are the cells. Grid points are the 

points in between the cells points connecting the cells. So, if we renumber the points this is 0 

to 6 are the number of points here and for each point we get a value. 

Now, here these are the number of points. So, what are the points shared here? If  two cells are 

common then 2 + 1=3 points are shared. So, 4, 5, 6 of processor 1 and 0, 1, 2 of processor 2 

are the same points.  

Now,  processor 1 will solve for the internal points for up to point 5; point 6 will be the 

boundary condition which will come from processor 2. Similarly, processor 2 will solve  from 

the first point which is its internal point, point 0 is a boundary condition which will come from 

processor 1. 

While renumbering the number of points each processor will get the total number of points 

plus how many overlaps are there, say here the total number of local points are 5 there are  6 

and the 1 overlap is there. Here, the total number of local points is 5 and then there are two 

neighboring boundaries. So, 2 overlaps are there. So, 0 and 6  ,7 points come . 

So, if there is overlap from both the sides ,if it has boundary inter domain boundary from both 

the sides two extra points are added, these two will be the boundary conditions. If there is 

overlap from only one side, the other side is the physical boundary one point is added, any two 

contiguous domains share three points in between them.  

While solving the domains it will solve up to point 5, this processor will solve from point 1 up 

to point 5. So, this particular point will be solved by both the processors. By data transfer we 

will ensure that the solution is the same in both the processor,so the consistency is achieved. 

 Point 4’s data from processor 1 will come and sit in processor 2s 0 point process. So, this will 

send the data processor 2 will receive the data. Point 2’s data from processor 2 will go and sit 

it in  point 6 of processor 1; this will send the data, this will receive the data. So, there will be 

a both way data transfer in these points in between the processors. 



So, we have to identify the domain boundaries, we have to add overlaps while calculating the 

local number of points, because local number of points = number of cells or number of divisions 

plus 1 and we have to add one point in each for each of the overlaps and we have to do a data 

transfer. Where will the data go? From the internal point’s last but one points data will come 

to the next right processor's 0th location.For the next processor it is second points data will go 

and sit in the last point of the previous or the left processor. These are simple things, you can 

look and observe how this data transfer is being happen these we are going to implement in  

our program. 
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Number of steps in the sub domain is the number of steps divided by nproc, if it is not divisible 

by nproc, then will get the remainder and we add the remainder to the processors whose rank 

is less than the remainder. So, this is the load balancing step; some processors get one more 

than the other processors. However, for each processor number of steps in x is 

number_steps_x_subdomain. 

Then, the number of nodes in x = number_steps_x_sub domain + 1, these are the internal points 

without considering the hello layer and the number of nodes in y is number_steps_y + 1. Based 

on the internal points we give the global ID of the starting point and the global ID of the end 

point. These are for the processor whose rank is less than the remainder, for the processor 

whose rank is greater than the remainder the previous processor’s start and end are added. 



If this is my domain, if there are multiple subdomains this is myrank 0 , and this is myrank 

nproc - 1. This is the first processor and last processor, they have physical boundaries. So, this 

processor has only one inter domain boundary. So,there is only one overlap, the number of 

nodes is added by 1. The other processor has two inter domain boundaries therefore, the number 

of nodes in that processor are added by 2. 
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Now, we know that number of nodes in x. So, what we calculate here is the number of nodes 

in x based on the number of nodes steps in that particular subdomain. Number of nodes in x 

into the number of nodes in y gives us the end point or total number of points in one particular 

subdomain. 

Now, this endpoint includes the points in the halo layer or the inter domain ghost layers with 

the data which is coming from the next sub domain being used for the boundary condition to 

the internal points of this sub domain. Based on this we are to  put everything in the matrix 

including the boundary conditions and only solve the matrix equation. 

Based on that we allocate the coefficient matrix A based on this npoint which is for the domain 

decomposed nodes. We initialize everything to be 0, we allocate B, X X old and initialize 

everything to 0. This is the size of the local domain, the total number of points in the local 

domain is num_node_x and this can vary because load balancing ensures that nearly equal 

amounts of points are there in each domain, but there can be little difference in the number of 



points. So, this number npoint  can be different for the different processors. These are done for 

the local matrices. 
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Now, we have to give the boundary conditions.  So, for the physical boundaries boundary 

conditions will directly come, for the inter domain boundaries boundary condition will come 

from the data transfer from the next sub domain. 

So, when setting the boundary conditions for the physical boundaries we put the boundary 

conditions in the B vector for the inter domain boundaries, we will not put the boundary 

conditions right now in the B vector, we will put them after data transfer. For myrank = 0, this 

is rank 0, this has rank nproc - 1.  

For myrank = 0,on the left most boundary we apply the right boundary condition. If myrank is 

not 0 for the leftmost boundary condition we only make in the A matrix diagonal 1, off diagonal 

0. We do not do anything for the right hand side vector. If myrank is nproc - 1, the rightmost 

boundary we give the right boundary condition here for this boundary also. 

In the other case if  myrank is nonzero for the rightmost boundary that is this boundary of this 

domain, we only would make the diagonal of A = 1, do not do anything with the B vector. For 

the bottom most and topmost boundary conditions these are physical boundaries for all the 

domains,so, we apply the boundary conditions accordingly. 



This belongs to processor 0 leftmost physical boundary ,rightmost physical boundary belongs 

to processor nproc - 1 and we will apply the boundary conditions rightly. So, we set up the 

main domain boundary conditions and also we define the inter domain boundary rows in A that 

are diagonal 1, non-diagonal 0 for the inter domain points. 
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Now, for the interior nodes we define the matrix there I give the coefficients, and, this comes 

from the equation finite difference equation,
𝑇𝑖−1,𝑗−2𝑇𝑖,𝑗+𝑇𝑖+1,𝑗

(𝑑𝑥)2 +
𝑇𝑖,𝑗−1−2𝑇𝑖,𝑗+𝑇𝑖,𝑗+1

(𝑑𝑦)2 = 0   . 
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Now, the data transfer buffers are to be allocated. We have discussed earlier that if this is my 

inter-domain boundary this data will go to the next domain. What is this data? If we see one 

particular domain there are n0 to n y points in this particular domain. So, this ny data will go 

to the next domain; physical boundary data may not we may not need to send it. 

However, the total amount of points in one y plane is num_nodes_ y. So, we allocate the buffers 

using num_nodes_y. Also, to define the global errors, we also define a variable mytime which 

will be used to calculate the time and set MPI_Barrier to synchronize all the processors. Using 

MPI_Wtime we calculate what is the time instant in that program. 

We will calculate it again and subtract it between them, and then we will find out how much 

time has been taken for the solver during this MPI call. So, you calculate MPI time here. All 

the points in y-line will be sent to the neighboring processor. So, we allocate everything by 

num_nodes_y. 
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Now, start the iterations. We have to first populate the send and receive buffer. So, what we 

are doing here we are solving A x = b. x  will get the updated solution, and, the boundary 

conditions will go in b.  

We have an inter domain boundary and we have to send data from the left domain to the right 

domain. We have to take the updated value the x values and these x values will be received by 

the next neighboring sub domain as the boundary conditions.  



So, this will come to this capital B. This will come to B. So, we put X_old because  the updated 

value after one iteration will be written in the old guess value. So, we are sending guess values 

here. They are basically the same, we could have done it after the update, we can do it before 

the update. 

We are taking the guess solution and putting it into the send_to_R. This data will go to the 

right. What will go right? From the left boundaries of the sub domain, the data will go to the 

right boundary, right. Which data will go to the right boundary? If this data goes to the right 

boundary, it will come from the right side of the main sub domain and number of nodes x - 2 

this will go to the next boundary. 

What will go to the left boundary? 0 will not go, 1 will not go, 2 will go to the left boundary. 

What will go to the right boundary? If the number of nodes is 6, 6 - 2, 4 will go to the next 

boundary. What will go to the left sub domain? The left sub domain will go to the second value, 

2 will go to the left sub domain. So, n x - 2 that will go to the right boundary and this is second  

from the left side, this will go to the left boundary. 
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So, the number of nodes - 2 will go to the right boundary, and x =2 will go to the left boundary. 

So, we have started the iterations in each sub domain; the entire data that will be sent is put in 

an array, which is the send buffer array. 
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So, first is that even processors will send ,if my id myrank is not nproc - 1. So, if it is not the 

last processor, then only it will send to the right sub domain, because the last processor has 

nothing in its right,  it is the physical boundary. 

So, if the processor id is divisible by 2 it will send the right sub domain; if the processor id is 

not divisible by 2, it will receive from the left sub domain. So, first the even processors will 

send and the odd processors will receive. Processor id starts from 0. So,it starts from the even 

processor; even processors will send at that time odd processors will receive. 

And, where will it be received? send_to_R, in n max - 2’s y line that we have put here that will 

be received in receive_from_L buffer. Similarly, and the matching tags will ensure that the 

same data is which is sent that will be received. 

Similarly, if it is not divisible by 1, then it will send to the right boundary , so first it is it will 

if it is divisible by 2, it will send and if non divisible by 2 it will receive. Now, if it is not 

divisible by 2, then after this receive it will send data to the right hand side and the even 

processors will receive data and from the left.If myrank = 0; that means nothing on left. 

This odd even staggering is done to avoid the bottleneck and we can see that the boundary 

domains that is myrank = 0, and myrank = nproc - 1, they do less operations. So, boundary 

domains will do less operations. They do less data transfer. 



Received data is mapped into the B vector. So, what is being received from R that will be 

mapped into the B vector because that is the boundary condition now. So, what is  received 

from a L is mapped into the B vector ,received from right is also mapped into the B vector. All 

the received data are mapped into the B vector. 

If myrank is not 0, my id is non zero, then data is received from both left and right.If myrank 

is 0 that is the first processor it has nothing from the left side. So, it will receive only from the 

right side, the last processor will receive only from the left side. So, the first and last processors 

have physical boundaries; they will do less data transfer. 

Now, all these steps have to be thought of by the programmer, put it into the right algorithm 

and then put in the right positions of the program. In open MP programming we have seen that 

the compiler itself does a lot of things if you give the right open MP construct, but in MPI 

programming or in distributed computing everything has to be done by the programming. 

Especially in domain decompositions, all this data transfer, all the mapping taking care of all 

the physical boundaries everything has to be well thought by the programmer and implemented 

here. 
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Now, we do the iterations and this iteration will be done only for the local number of points. 

There is an implicit MPI barrier after that there is an  implicit barrier is MPI allreduce, but we 

put an explicit barrier also.  



 From each point within each processor we calculate a local error, now we take this local errors 

called MPI allreduce maximum and maximum of these local errors come as global error. 

So only for myrank 0 processor we ask them to print global error, because now we are looking 

for convergence based on the global error. If the global error is less than the error max, then it 

is a convergence error. We are not looking into local error or error in each processor, we are 

only seeing if global error has reduced around within some value. 

So, we write global error and then if it has not reached convergence level continuing with the 

iterations. Do global error for convergence check, write global error iteration block if global 

error is small break and then again call MPI_Wtime and subtract the previous my time. So, we 

get the time interval within which this MPI calls and the domain decomposition based Jacobi 

solver has been operated and write the execution time. 

Again all these  writing  operations are done by only one processor myrank 0.It writes that 

convergence attained and MPI finalize comes out of the program. So, this is our first MPI 

parallel program for a matrix solver. 
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Now, we look into the solutions, we can see that the solutions show the continuity and it looks 

right visually.We can also calculate and validate with the analytical solution .This data comes 

from a Fortran code (we have shown you a similar C code)on 32 processor Xeon CPU with 

128 GB RAM. 



For a matrix of 100 by 100 size for 1 processor the time is 4.09 seconds; 2 processor time is 

2.75* 10-2 seconds; 4 processor it is further reduced 1.46*10 - 2 second. 8 processor it increases 

to 1.5 *10 - 2 seconds. 

For a 400 by 400 matrix 1 processor is 1.74 seconds ;2 processor 0.71 seconds; 4 processor 

0.25 seconds; 8 processor 0.15 second; 12 processor 0.09 seconds; 16 it is also 0.09. So, after 

a certain number of processors we are not getting the advantage of increasing the number of 

processors and it is well known to us already looking into the performance matrix of the 

processors that after a certain extent parallel overheads increase and we do not get better 

performance. 

There is an interesting case for a large 10000 by 10000 matrix ,1 processor 710 seconds; 2 

processor  106 seconds; 4 processor 58 second; 8 processor 16 seconds. So, the time elapsed is 

reducing more than the added number of processors, and it keeps on reducing up to 4.74 second.  

The observations are solutions are continuous over block boundaries.Parallel performance is 

better for larger problems. As we are increasing the problem we are getting more speed up in 

that sense. For N = 100 and 400 performance falls at a higher number of processors, because 

the  computing to communication ratio falls down and performance falls. 

For N = 10000 speed increases more rapidly than number of processors. Is it really giving us 

super scalability, because ideally if we increase the number of processors, speedup should  not 

be more than the 45 degree curve, but here we can see much higher speed up here. Is it super 

scalable? So, I will go to the next slide and discuss that. 
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The operation in Jacobi row solver is 𝑥𝑖
(𝑘+1) 

=
𝑏𝑖−∑ 

𝑗≠𝑖  𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑎𝑖𝑖
. A processor operates  within 

the rows assigned to it. In each row if it is a single processor case it operates over all the column 

elements. If it is a multiprocessor case it operates over less number of rows and within the sub 

matrix it also operates over less number of columns. 

So, operations are reduced in terms of N square and that is why you are getting speed which is 

not scaled with N, but rather scaled with N square and this is specially observable for large 

problems. As Nproc increases, the number of domains increases and operations in a row 

reduces along with the number of rows. Therefore, the total number of operations per processor 

also reduces. It is not only operations in a processor that are reduced by a factor of the number 

of subdomains. Operations also reduce because operations within a row reduces. 

However, as the matrix is sparse the lot of operations are redundant. So, if you remember when 

we talk about scalability, the speedup is obtained by dividing the parallel time by the most 

efficient single processor time. But, here as we are doing this multiplication we are not doing 

it very efficiently, because there are a lot of zeros in one row. Only these five are nonzero 

numbers. Still we are doing operations for these zeroes. 

So, the single processor program is also not an efficient program. In order to make an efficient 

program we only have to consider the nonzero numbers and instead of doing this matrix vector 

multiplication for all the elements including the zero elements we will do it for only the nonzero 



numbers. So, the efficient implementation will be like only considering the nonzero numbers 

and their multiplication with the coefficients. 

For N = 10000, the CPU time is 11.57 seconds; where earlier when we are doing it for all 

elements in the column this time is a sequential program this time was 710 seconds. Now, if 

we take this program then we will see that it is not actually super scalable, because the number 

of operations in a row is also fixed, only five operations it is doing in a row. 

However, this can lead to a cache miss issue, because it is looking into x i - 1, then x i + n x. So, 

if the matrix is large, then all the x vectors may not sit in the fit in the same cache. So, with an 

increasing number of processors it might give more cache misses and fall down the 

performance. 

So, one better idea can be that if we can consider all a’s is rather in a contiguous matrix and 

only five elements in a matrix is considered then it will be more cache friendly, and if we can 

do that the calculation time from 11.5 second ;this is a single process of calculation time 

reduces to 7.12 second. So, parallel parallelization high performance computing is fine, but we 

must be sure that we are doing the right thing solving a large problem most efficiently even 

when we are doing sequential processor process calculation. 
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So, we are not considering the cache friendly operation, but just considering only the nonzero 

numbers are taken and five operations are done for each row for matrix vector product. We can 



see that for N = 100, 2.99 *10 - 3 seconds for 1 processor; 3.8*10- 3 for 2 processor; 4.46* 10 - 3 

. 

So, N = 100 parallelization is not beneficial as we increase the number of processors, because 

computing is very less; only five computations per row and number of rows are also less. As 

we increase the number of processor communication is more and parallel overheads are 

reducing the performance. 

N = 400 performance is reducing slowly, but not as good as we have seen earlier. N = 10000 

we can see that 11.5 second is single processor performance; 8.88 is 2 processors time; 7.28 is 

4 processor times so on. So, scalability is linear, speed up is not super linear. Scalability is 

linear with number of performance.Earlier we have done it for tolerance of 10 to the power - 

3, but here we converge the matrix because calculation time is less. Now, we can see that for 

N = 400, if we see sequential time by parallel time which is sped up by N processors ,the speed 

up actually falls with increasing number of processors. Speed up is greater than 1, but it falls 

for an increasing number of processes. 

So, it is not beneficial to go to 4 processors; for N = 100 speed up is less than 1 we do not 

consider that; for N = 10000 speed up increases with the number of processors, but it is less 

than the 45 degree slope. For N = 20000 speed up is better because with the same number of 

processors, if we can increase the problem size parallel efficiency will be better, speed up is 

better. 

Speed up also shows an increase in slope after 16 processors and this is probably due to the 

issue that if you increase the processor local matrix sizes are smaller and the cache miss is less 

small; if the matrix is large cache miss is more. So, speed up increases here. 

So, the observation is speed up is better for the larger problem and if we take a very small 

problem speed up is bad, if we take a larger problem speed up is good. For N a close to 1 

million or even more than that we get more linear speed up and if we take a very large problem 

like 5 million problems we have tested speed up scalability line is almost close to the 45 degree 

scope up to a large number of processors. 

So, you can get good speed up to a large number of processors if we take a large problem. 
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Well, these are the references and we have discussed domain decomposition methods; we have 

discussed load balancing, communication, synchronization.We took up a Jacobi solver 

parallelized it using domain decomposition method and also looked into the performance of 

the solvers. 


