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Hello everybody, welcome to the class of High-Performance Computing for Scientists and 

Engineers. In today’s class, we will discuss about Domain Decomposition Technique. We 

are in our module 3, Message Passing Interface. If you remember in the previous 

discussion, we are discussing about matrix solvers and we have established the fact that 

many scientific computing problems involve solution of matrix equations.  

So, today we will see a method by which we can parallelize the matrix solvers or we can 

take a scientific computing problem which involves matrix solvers and parallelize it.  
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Domain decomposition is heavily used in scientific computing problems involved. In 

computational mechanics, computational fluid dynamics, computational physics, 

computational astrophysics we see people doing domain decomposition. Domain 

decomposition is suitable mostly for distributed memory systems, that is why MPI; when 



you learn MPI program, it is and specially from the perspective of learning scientific 

computing, it is essential that you know the domain decomposition technique. 

So, today we will starts discussing about domain decomposition technique for the large 

problems. We will see mathematical procedures which is known as Schwarz procedure, 

and then we will see how this can be used to get design parallel algorithm for matrix 

solvers.  
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We have discussed in last class, physics-based problem where we get a governing equation 

in form of a differential equation or rate equation can be posed as a matrix solution 

problem. We have to solve a large matrix equation, that is the numerical equivalent of 

solving a differential equation for physics-based problem.  

So, accurate representation of physics over complex domains may require large number of 

grid points; because in order to get accurate solution, the approximation terms must be 

good and the errors or the omitted terms from the Taylor series expansion must be very 

small. So, we need to ensure that the distance between the points are small which can be 

again established by using a large number of points. 

If we use large number of points, the accuracy will be good; but we will get matrices with 

very large number of rows or large size. So, we will get a large matrix problem if we try 

to accurately solve a physics-based problem and the following will be the issues for these 



problems that, storage of large matrix; if it is a dense matrix, if there are n rows, for storing 

we have to store N square memory locations. If we have a million by million matrix, we 

have to solve 10 to the power 16 square, 10 to the power 12 elements which is large; we 

will find it difficult to fit in a ram, and specially while accessing the matrix, the cache miss 

will be very high. So, we need to find out some efficient storage. 

Specially, in many cases we get sparse matrices. If you remember sparse matrices, there 

are only few nonzero numbers in a row and most numbers are 0. So, you do not need to 

store the 0s. You only store the non-zeros; but you need to use a mapping, so that when 

you are storing the non-zero numbers in the main matrix, they sit in the right place. You 

need an efficient storage algorithm and again the cache issues have to be looked upon 

when you are storing that.  

So, one will be the storage issue; because for a large matrix, the number of elements is 

very large. The next issue will be; if the number of rows is high and the number of elements 

in each row will be similarly high, therefore the numerical errors will be high. Numerical 

errors are mainly round of error; you get an irrational number or get something like a 

recurring decimal, get some number which does not have finite decimal space, after certain 

decimal numbers, you truncate the number, you round it off and that also gives you some 

error. If you have large number of problems, these errors pile up and you get high amount 

of error, and specially the direct solve matrix solvers fail in most of the cases for large 

matrices due to this round off error, and sometime we get numerical instability issues also 

due to round off errors. 

Iterative solvers may require large number of iterations, in case of Krylov subspace-based 

solvers like conjugate gradient; the number of iterations of the order of N, N is the number 

of rows. In case of basic iterative methods like Gauss Seidel, Jacobi or even SOR; the 

number of iterations is much high. So, if you are not using direct solvers to avoid round 

off error; using iterative methods the number of iterations is high. Also, in each iteration 

almost N square operations are required; because each iteration requires a matrix vector 

product. So, total number of operations are very high in case of large matrix solvers. So, 

we have to do parallel computing. Well, how can we do parallel computing here? One way 

of doing parallel computing is data decomposition, which we have done for the openMP 

type of problem, and we will see some examples of data decomposition for MPI based 

parallelization also in some of the later class. 



Data decomposition means, you have a large matrix vector multiplication matrix which 

has to be multiplied with a vector. Ask each of the processor to take care of few rows of 

the matrix and finally, combine that. The other one is a task decomposition. What we will 

do in domain decomposition? We will take a large domain over which many points are 

there, which gives us a large matrix; we will decompose the domain into small sub domains 

and ask different processors to look into different sub domains.  

But we have to see that how we can do that, we have a large matrix problem; but each 

small sub domain will give me a small matrix problem, how this can be related?  
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Well, partitioning the domain into smaller blocks and solve small matrix problem for each 

block in multiple computers in parallel, that is the essence of domain decomposition.  

You are solving Laplacian of T or conduction equation over a large Cartesian domain; you 

decompose it into four small sub domains; get small matrix problems in each sub domain 

and solve them. While solving them you need to ensure continuity of the solutions; so, you 

get the boundary conditions by dynamically exchanging the values across the domains.  

So, value of this domain will act as its boundary condition; dynamically exchange the 

boundary conditions among the neighbouring domains over the partition lines. This is in a 

nutshell what is domain decomposition method. 



But one question will come that, how can we be sure that this gives us right solution? In 

actual problem we are changing it to different sub problems, including the boundary value 

exchange, introducing new iterations; because we will of course will not get it directly. So, 

we have to use iterations to ensure continuity across the boundaries; how can we do that? 

We will, look into that.  

Well, let us see the advantages; first is that once we distribute the domain over different 

computers, we reduce matrix size. Say, we can understand that as the number of points are 

small, the matrix in each subdomain will be smaller. So, instead of storing a large matrix, 

we are storing many small matrices; but overall matrix size will also reduce. 

Let us see that we have say 1000 points here and 100 points here. So, the matrix size will 

be 10 to the power 5 into 10 to the power 5, N = 10 to the power 5. But now we get 250 

here and 100 here; so, we get 250 into 100 is 25 into 10 to the power 3.  

The total number of elements in each matrix will be 250002 into 4. This is much smaller 

than this number. So, there will be 4 matrices of N = 25 into 10 to the power 3. The overall 

matrix size is also small, that is one big advantage. 

The next advantage is of course parallelization that, each domain can be independently 

and concurrently solved in multiple computers; only iterative methods can be used for that, 

because you cannot directly solve this while exchanging the boundary conditions, you 

need iterations to ensure continuity. 

So, when you are using multiple computers; only after one iteration you are exchanging 

data across computers, but at any point of time four processors are active and therefore 

this is parallelized. The solution will come fast and you will you can get increased speed. 

So, you can get better speed in terms of crunching numbers, in terms of solving equations; 

because four parts of the main matrix is being solved in four different processors.  

Also, the data in each processor is smaller than the large matrix and the total data is also 

smaller, than if we have to store the main large matrix. So, this in terms of the matrix size, 

it is also helpful.  
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We have seen the previous example where you have a Cartesian domain and it is very 

simple exercise to make partitions. But in complex problems the domains are not 

Cartesian; they are curvilinear, the geometry looks much complex.  

So, doing getting domain decomposition might be little difficult, there are certain way out 

for that. In case of a complex geometry or of an industrial problem; say turbine, blades 

rotating inside a casing if you have to do domain decomposition, one idea is that the divide 

the geometry into different blocks and then inside each block you generate a mesh. 

So, each block will be a domain and, in this way, a complex geometry can be well handled 

and the block boundaries are to be mapped correctly. So, which block is neighbour of 

which one and which block will supply data to exchange data with which neighbouring 

block that has to be ensured. In case you have multiple reference frame, like one block is 

rotating another is fixed; one part of the geometry is rotating, another is fixed etcetera, you 

can use multiple reference frame and you can put different reference frame with different 

blocks and model that geometry.  

So, domain decomposition can be extended for complex geometry problems also; but even 

for completely unstructured problem, there are graph-based partitioning by which one can 

get domain decomposition.  
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There are standard techniques for that. Now there are two types of domain decomposition; 

one is non overlapping domain decomposition that is one domain ends, another domain 

starts from there, the domains just touch each other. The other is overlapping domain 

decomposition, the domains overlap certain points; one domain is ending here, the 

neighbouring domain is starting before that. Using this we can ensure higher level of 

continuity, c 2, c 3 level of continuity; because a greater number of points are same in 

between each domain and they have same values. Each point should have a unique value, 

whichever domain it belongs to. So, therefore, overlapping and non overlapping domain 

decompositions are there.  
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We will discuss about overlapping domain decomposition later; because it helps us to 

ensure continuity of the solution. 

We come to a matrix problem. So, you have a L shaped geometry over which solving some 

differential equation, which is laid as a matrix equation and we are solving it here. The 

entire domain is given by 𝛺  and 𝛺1, 𝛺2, 𝛺3are the small sub domains obtained through 

the domain decomposition, and 𝛤13 and 𝛤12 are the inter domain boundaries.  

So, the main domain is distributed into several sub domains. Now, this can be overlapping, 

can be non-overlapping; here it is shown as non-overlapping, we will see later an example 

of overlapping domains. 

Form the matrix equation in each sub domain using the inter domain boundary values. 

Consider 𝛤12 for 𝛺1 as the boundary condition, which is coming from the solution within 

the sub domain 𝛺2,and while forming the matrix equation for this sub domain, use this 

boundary conditions.  

So, what will be the next step? That we will solve this matrix equation, here you solve it 

for, here you solve it for here; then re exchange the boundary conditions and iterate till 

you get convergence. So, propose an algorithm to solve each domain independently; this 

is a matrix solver algorithm, you can use something like Jacobi, conjugate gradient 

biconjugate gradient, depending on your requirements and certain conditions of the matrix. 



Solve each domain independently. Transfer the inter domain condition solutions to obtain 

continuity across boundaries; this is an important step and this will ensure that you are 

basically solving a large problem. This is a data transfer process and therefore, you will 

require message passing interface calls, send and receive calls for this. We will later see 

that we have spent times on MPI based communication, they will find their application in 

this particular step.  

Now do this iteratively; because in one go you cannot ensure that the solutions have 

continuity across the domain boundaries, so the final solutions satisfying equations over 

all sub domains including the inter domain boundaries; the final solution satisfy 

everything.  
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Say, we are solving 𝛻2u = f in the domain. The boundary conditions are U = UBC  given 

at the outer domain, some boundary condition is specified, the outer domain boundary 𝛤.  

Now, if you write this as a single matrix problem with the boundary conditions, you will 

get the matrix equation A u = b. We have to be sure that what we are doing domain 

decomposition is right; otherwise it will not converge, it will give us wrong result or it 

might not give us end result. So, let us see mathematically what is happening here.  

Now, x is the solution, in each of the sub domain the solution is, x1, x 2, x 3, they are the 

solutions in the sub domain. And in the inter domain boundary, there are also points on 



the inter domain boundary, few points lie on the boundary, the solutions are y. So, ∑ xi be 

the solution at the domain internal points and y is the solution in the inter domain boundary. 

Then this equation A u = b can be written as 

[

𝐵1   𝐸1

 𝐵2  𝐸2

  𝐵3 𝐸3

𝐹1 𝐹2 𝐹3 𝐶

] (

𝑥1

𝑥2

𝑥3

𝑦 

) = (

𝑓1

𝑓2

𝑓3

𝑔 

) ; 𝑢 = (
𝑥
𝑦) .  A u = b will give us block matrices for 

the three domains, and few matrices for the inter domain boundaries.  

So, A u = b will can be written as these three block matrices plus the block matrix for the 

inter domain boundary and the matrix which connects the intra domain point, the within 

domain point with the domain internal point with the inter domain boundary E1, E2 and E3, 

f 1, f 2, f 3. So, this is basically representation of A u = b in the domain decompose method 

and A matrix is nothing, but these elements.  
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𝐴 (
𝑥
𝑦) = (

𝑓
𝑔

)   ⇒ (
𝐵 𝐸
𝐹 𝐶

) (
𝑥
𝑦) = (

𝑓
𝑔

) or Bx+Ey=f and Fx+Cy=g ⇒x=𝐵−1(𝑓 − 𝐸𝑦) 

So, F𝐵−1(𝑓 − 𝐸𝑦) + 𝐶𝑦 = 𝑔  ⇒ (𝐶 − 𝐹𝐵−1𝐸)𝑦 = 𝑔 − 𝐹𝐵−1𝑓  

(𝐶 − 𝐹𝐵−1𝐸) = 𝑆 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑆𝑐ℎ𝑢𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  

⇒𝑆𝑦 = 𝑔 − 𝐹𝐵−1𝑓 



⇒𝑦 = 𝑆−1(𝑔 − 𝐹𝐵−1𝑓) 

This is a point which is not parallelizable, rather which is a synchronization part which 

involves multiple processor output from multiple sub domains.  
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So, in a domain decomposition problem, this is the Schur component; solution of the 

internal points are found that 

 𝑥 = 𝐵−1(𝑓 − 𝐸𝑦), 𝑦 = 𝑆−1(𝑔 − 𝐹𝐵−1𝑓) . If S inverse exists, y can be found and hence 

x can also be found.  
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So, one focus in doing a domain decomposition is that, we should do domain 

decomposition in such a way that this Schur component is invertible and the standard 

techniques which will show as Schwarz technique ensures that.  

 So, the domain decomposition problem of solving A u = b will be finding solving these 

two equations x and y, this is B. Hence, the inverse of B can be found in decoupled sense 

as disjoint process; because B is combination of the block diagonal matrices. Hence, the 

set of equations can be solved, provided y is made available to the particular process.  

So, if y is known a priory say, we guess the values of y and, each of these vectors can be 

solved and we can find out the x’s. Now based on the x’s, we have to again guess the next 

iterated value of y and then we can update the x’s that is the method.  
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This is formalized as Schwarz multiplicative procedure and this will do for overlapping 

domain. Overlapping domain means, this is my main domain which is divided into these 

three sub domains; 𝛺1, 𝛺2, 𝛺3. Omega 1, this sub domain actually ends here, this is 𝛺1. 

Similarly, the sub domain 𝛺3ends here. This is my omega 1; this has an overlap here; this 

has an overlap here.  

𝛺1has overlapped with 3 and 2; this is my omega 2, I use another pen here, this is my 𝛺2, 

this is the overlap with 𝛺1,and this is my 𝛺3 which is overlap with 𝛺1 also and the 

boundaries are given similarly. So, when we will solve 𝛺1, we will solve up to these points. 

Now, the boundary condition for 𝛺1 which lies in domain 2 will come from the solution 

of the sub matrix problem in domain 2. Now once we solve this similarly once 𝛤13 the 

boundary condition for 𝛺1 which is at 𝛺3 will come from its solution.  

Now, look what we will do? Once we solve for 𝛺1, we will update along these lines and 

this line; this will be boundary condition for 𝛺3 and this particular line will be boundary 

condition for 𝛺2 and we will solve it.  

So, again while solving this we get the updated values at this line and this line. So, this 

will be boundary condition for 𝛺1 and an entire thing can be done parallelly; that means, 



every time you use the last updated value like a Jacobi iteration at the boundaries and solve 

all the domains and update the boundary values. Boundary value for one sub domain is an 

internal point for another sub domain. So, from the solution of the neighbouring sub 

domain update the boundary values of the next of the neighbouring sub domain or constant 

sub domain. Well, so let us solve Dirichlet problem; because boundary is known it is a 

Dirichlet problem; already the boundary condition is given. 

On one domain in each iteration and consider boundary conditions based on the most 

recent solution of the other domain. This is established through boundary overlap. 
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The algorithm is: chose an initial guess u to the solution which includes the inter domain 

boundary points as well as the internal points.  

Iterate until convergence; keep on doing that till you see that there are certain changes and 

once these changes are not there, it has converged. The previous iteration and last iterations 

solution have very small difference, we have discussed about convergence in our last 

lecture.  

For i = 1……. s there are s sub domains. So, solve Bixi is fi- Eiyi; the local problem inside 

each of the sub domains, with u = uij in 𝛤𝑖𝑗. So, say if you are solving for block one, you 

know that u13, u12 are the boundary conditions here. 



If you are solving for 𝛺3, you know that u31 is the boundary condition here; if you are 

working solving for 𝛺2, you know that u21 is the boundary condition here. So, using this 

boundary condition, solve for each of these domains and this is a parallel step; you can do 

this in parallel, in different processors.  

Update the values: once you have solved this you update these values; once you have 

solved for 𝛺3 you update this, once you have solved for 𝛺2, update these values. So, once 

you are solving within the particular subdomain, you update for the boundary conditions, 

after the solution update the boundary conditions of the neighbouring sub domains. Till 

convergence you solve this in all the sub domains. This algorithm sweeps through s sub 

domains and solve original equation in each domain based on boundary conditions that are 

updated from the most recent values of u. 

It is shown that this is a convergent method, it works exactly like a block Jacobi or block 

Gauss Seidel algorithm; here, the implementation shows a block Jacobi algorithm and 

within the finite number of iterations, it converges to the right solution. 
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So, based on this we can write down that, these are the essential steps for domain 

decomposition-based parallelization of a matrix solver.  

1.Divide the domain into a number of sub domains. Domain overlaps are allowed such 

that the full row equation for each internal points of the sub domain are available.  



So, how the overlaps are given? Overlaps are given in a sense that, if you are solving 

within the last points in that particular sub domain, there should be right boundary 

conditions, so that each of the row equations of that sub domain is solvable. The points in 

the neighbouring sub domain will be considered, so that you can complete the equations, 

you can get all the points for writing out writing down the equations of all internal points 

in the sub domain. We will discuss about it later from perspective of Jacobi iteration of 

Laplace equation we can see that. We take points in another sub domain, so that the 

equation of each row of the internal points of one sub domain gets sufficient number of 

boundary points, the boundary conditions are sufficiently defined. In that way you allow 

the domain overlaps.  

2.Start with a global guess. This is very important; if we start with local guesses, we can 

find sometime it might not converge even. Start with the global guess, so that initially there 

is a continuity of the solution. The continuity at the domain boundaries should be there 

from the initial step and then only it will converge; convergence is not unconditional; it 

has to start from a global guess that is the main condition of the convergence. Otherwise, 

you will get Schur component which is not invertible; there can be certain cases like this.  

3.Update the solution at each subdomain locally. Consider inter-domain boundaries as 

Dirichlet with the last updated solution value. So, each sub domains the internal points are 

updated locally; that means each subdomain is solving the matrix equation locally. There 

is a small block matrix associated to each sub domain and each sub domain is solving it 

locally. Now, this can be parallelized. If there are hundred sub domains, there are hundred 

processors which can look into each of the sub domain as allotted to it and solve the 

governing equations there. Because this solution is based on the number of internal points, 

the solution will take at least 10 order of n iterations and n square operation. So, this 

solution is costly. Now, this is the part which will be executed in multiple processors in 

parallel and this is a disjoint part; each of this can be done concurrently, one processor 

does not need to know about what the other processor. Once this update is done; then do 

the data transfer step. 

4. Update the boundary values in one sub domain as obtained by the local solution of the 

neighbouring domains. As the neighbouring domains are updated, the boundary points 

which of which is belonging to this particular sub domain, get it updated after the one 



iteration in the neighbouring domain or all the domains you do the boundary exchange. 

This is the data transfer step associated here.  

5.Iterate over the domains to get a global convergence: This will require a synchronization; 

that after the iterations see whether your global convergence has been achieved else you 

still continue iterations.  
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We will take a Jacobi solver for Laplacian of T = 0; we look into the sequential program, 

simple Jacobi solver. We will identify the steps that where we can distribute in multiple 

sub domains, that is the load balancing step each subdomain will go to a processor, and 

then we will see that how we the parallelization can be done that each subdomain we will 

get a small problem and solve it independently. 

Then we will see about the data transfer that after independent iterations in each sub 

domains, there will be exchange of the boundary values across the sub domains and then 

synchronization. We will take a Jacobi solver, we will identify the locations in which 

parallel constructs can be brought into the Jacobi solvers, and I will show you the parallel 

version of the Jacobi solvers developed through this exercise. Then we will see what are 

the performance of this course, especially the speed up and efficiency of the programs.  

So, these are the references William Gropp’s MPI book, Gramm, Gupta, Karypis Kumars 

MPI book, Quinn’s MPI and OpenMP C programming book and Yusuf Saad’s book which 



I discussed in last class, Iterative methods for sparse linear systems specially to get the 

mathematical part Schur procedure and Schur component; you can go through Yusuf 

Saad’s book, part of this book is available online where you will get the relevant material.  
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This class we looked into basic ideas of domain decomposition, we look into how this can 

be applied over a matrix problem and what are its mathematical foundations, what is 

Schwarz procedure and what are the steps in parallel implementation.  

So, in the next class we will take a sequential Jacobi solver and look into its domain 

decomposition-based parallelization. We will do this exercise through these lectures only. 


