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Hello, welcome to the 24th lecture of the course High Performance Computing for Scientists 

and Engineers and this is the 3rd module which is Message Passing Interface, and we will 

discuss Matrix Representation of Physical System and Matrix Solvers.  

In scientific computing, a great interest is always involved with matrix solutions. We can see 

that many complex physical problems can be represented as matrix problems and we need to 

find a solution to matrix equations. These problems are very large in nature, they are 

computationally quite complex and therefore, we need to deploy scientific high-performance 

computing techniques.  

So, this particular class, we will discuss some fundamentals of matrix solvers, and some 

fundamentals of how we can get matrix equations from physical problems. In the subsequent 

classes we will see how MPI can be efficiently utilized to parallelize these problems and solve 

large problems in realizable time. 
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In today’s lecture, we will discuss matrix methods for differential equations and matrix solvers 

especially iterative methods. 
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Why do we need to represent physical systems in the form of matrix equations? First is that, if 

we get a system of linear equations with multiple variables, they can be expressed as matrix 

equations, and the advantage of expressing them as matrix equations is that many common 

linear algebra techniques can be operated over matrix and we can easily get solutions. We can 

quantify the nature of solutions. We can predict certain things about the behavior of the system, 

if we can represent them by matrix equation.  

If we have a large number of linear equations, a system of equations we can represent them as 

a matrix equation. Physical systems with multiple degrees of freedom; therefore, can give us 

matrix equations, because if we have multiple degrees of freedom, each degree of freedom will 

give us 1 equation, and if these equations are coupled, and if they are linear equations then we 

can represent them as matrix equations.  

Rate equations in continuum can be converted into matrix equations by Taylor series like 

approximation. Continuum means, it’s not discrete molecules or district elements it is a 

continuous medium over which some physical laws like conservation of mass, conservation of 

momentum, conservation of electricity, law of electromagnetism, some of the physical laws 

are active . Using these physical laws; we can get some rate equations, rate equations means, 



they are differential equations; however, they can be converted into linear matrix equations by 

certain mathematical techniques  

As we talk about continuum, this is a continuous media over which we are considering certain 

behavior, but as this is a continuous medium there are actually infinite degrees of freedom. If 

we think of something in space, at any point in space we can get say temperature, we can get a 

different temperature at any point inside a room. So, space is a continuous medium and there 

are infinite degrees of freedom in that.  

However, we can approximate this infinite degree of freedom by a large finite number of 

discrete variables, because if we think about infinite dimensional space it is difficult to express 

it as in form of matrix equation or in form of discrete difference equations. So, instead of really 

going into infinity, we take a large number of points in the space, and, for getting an accurate 

representation, these numbers must be very large. Therefore, the equation systems which will 

get while trying to solve a rate equation in a continuum will be a large system of equations and 

therefore, the solution of the matrix will be computationally very complex. 

We need efficient matrix solvers for them. Matrix solvers means that given Ax = b, A is a 

matrix, b is a vector, x is a vector, we have to find a solution vector x. 

So, you need efficient matrix solvers for doing that because we have a very large number of 

equations. In many cases, the matrix size can go up to billion by billion in certain cases. Even 

using a very good matrix solver may not be sufficient and we need to do high performance 

computing or parallel computing for that. The great interest in parallel computing has been 

developed within the scientific computing community, due to the fact that this matrix equation 

can be very efficiently and optimized to be solved early using HPC techniques. 

So, in the subsequent classes we will see how matrix equations over a large problem, where 

the matrix size is very big ,can be solved using parallel computing. Right now, in this particular 

lecture we will see some basics about matrix equations and some basics about the solution of 

this matrix equation.  

Based on this foundation , in the subsequent classes we will try to see parallelization of the 

matrix equations. 
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So, let us consider a one-dimensional steady heat conduction equation with constant 

conductivity. We will use a method called finite difference where a physical problem will be 

solved numerically and will get a matrix out of a rate equation or a differential equation.  

The governing equation for one-dimensional steady heat conduction without any heat 

generation  
𝑑2𝑇

𝑑𝑥2 = 0 . We have a 1 d rod which starts from x = 0 ends at x = 1 and we need to 

solve the governing equation here.  

We understand that this is a very simple problem given the right boundary conditions. So, we 

really do not need any numerical method, we can forget about high performance computing. 

We can very well integrate this equation and say that T is a linear function of x.  

However, I am trying to demonstrate a simple technique of getting a matrix equation out of this 

differential equation. So, this is a differential equation which is given to us. I am trying to 

demonstrate a simple technique by which we will get a matrix equation out of this.  

So, this is a one-dimensional rod. So, x = 0 to 1 and we have to find out solution of  
𝑑2𝑇

𝑑𝑥2
= 0 

here, with the boundary conditions aT (x) = 0 T = 0, at x = 1 T = 1. We know that T = x is the 

solution of the equation, but finding a solution is not the purpose at this stage, we have to see 

how this governing equation can be converted into a matrix equation. 



So, this is a continuous description in space. Every point will have some value of T. However, 

once we try to use a numerical method and why do we try to use a numerical method, because 

we want our computer to solve it. Computers do not understand derivatives, computers do not 

understand continuity, computers understand about addition, subtraction, multiplication, 

division and other logical operations.  

So, we need to express this problem into addition, subtraction type of problem and therefore, 

we need to find out discrete points over which discrete addition, subtraction equations are valid. 

What will we do? We will use something called the finite difference method, where we will fix 

discrete points on the continuous rod, and we will try to seek a solution of the equation on these 

points only. If distance between the points; are constant we call this to be a uniform mesh. This 

is the mesh or grid system. If the distance is varying, we call it non-uniform. For simplicity, I 

am focusing only on uniform mesh problems. So, at any point (x) temperature is a function of 

x T(x).At the next point which is dx away from x temperature is T(x+dx) at the previous point 

which is dx in the negative side, dx away from x temperature is T(x – dx).  

Now we use what we popularly known as Taylor series expansion. So, 𝑇 (𝑥 +  𝑑𝑥) = 𝑇(𝑥) +

𝑑𝑇

𝑑𝑥
∗ 𝑑𝑥 +

𝑑2𝑇

𝑑𝑥2 ∗
(𝑑𝑥)2

2!
+ ⋯  and higher order terms. 

This is the expression of T (x + dx). So, what we can see is that if we know T (x) we can get 

T( x + dx)  provided the derivatives are also known to us and there is an infinite series. Now 

we write T (x – dx) similarly which is 𝑇 (𝑥 −  𝑑𝑥) = 𝑇(𝑥) −
𝑑𝑇

𝑑𝑥
∗ 𝑑𝑥 +

𝑑2𝑇

𝑑𝑥2 ∗
(𝑑𝑥)2

2!
−

𝑑3𝑇

𝑑𝑥3 ∗

(𝑑𝑥)3

3!
+ ⋯. Now, this rod has a size 0 to 1 therefore, dx is always less than 1. So, dx square is 

further smaller, dx whole cube is much smaller dx whole to the power 4 is also very small. So, 

if we can add these two expressions, this 
𝑑𝑇

𝑑𝑥
 term will be cancelled out , 

𝑑3𝑇

𝑑𝑥3 term will be 

cancelled out. 

We will be left with 
𝑑2𝑇

𝑑𝑥2
 and the T (x + dx),T( x – dx), T(x) and something which is multiplied 

by dx to the power 4, then dx to the power 6 etcetera. These terms will be anyway small terms. 

So, what we will do we will add A and B and try to get an approximate expression of 
𝑑2𝑇

𝑑𝑥2.  
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We add A and B and get  T (x + dx) + T (x - dx) = 2* T (x) +2* 
𝑑2𝑇

𝑑𝑥2 ∗
(𝑑𝑥)2

2!
 + 2*

𝑑4𝑇

𝑑𝑥4 ∗
(𝑑𝑥)4

4!
+ ⋯ 

so on.  

After these terms, all terms will be further smaller because dx to the power 6 is smaller than dx 

4, dx to the power 8 is also smaller than dx whole to the power 4, so on. So, these are for 

smaller terms. This is probably the largest order of the terms remaining in the series. 

So, we can rearrange it and write 
𝑑2𝑇

𝑑𝑥2= 
𝑇 (𝑥 + 𝑑𝑥) − 2 𝑇 (𝑥) + 𝑇 (𝑥 − 𝑑𝑥)

(𝑑𝑥)2   +2*
𝑑4𝑇

𝑑𝑥4 ∗
(𝑑𝑥)4

4!
 +…..(higher 

order terms)  

What is this? This is the difference of temperature at 3 neighboring points, some sort of addition 

subtraction , some support difference of temperatures divided by dx whole square. If we write 

that, we make an error, we neglect these terms and we say that we are doing an error which is 

of order 2; that means, the largest term of this error is dx whole square, there are some other 

smaller terms, but the largest term is dx whole square. 

So, this is a second order accurate expression, the error is of the order 2 and this is the largest 

term in the error. So, if we substitute 
𝑑2𝑇

𝑑𝑥2
 by this expression, the error which we are making 

will reduce, because dx is always less than 1. So, if dx is 0.1 the error is of the order of 0.1 

square, 0.01 ,if dx is 0.01 the error is 10 to the power - 4. So, as the dx will reduce, this error 



will reduce and how can dx reduce? if we go back to the previous slide yeah dx is the distance 

between 2 consecutive points. 

If we have a greater number of points this distance will reduce. So, as we increase the number 

of points dx reduces, and we get more accurate expressions.  
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Well, so starting from a differential equation  
𝑑2𝑇

𝑑𝑥2 = 0, we get a difference equation T (x + dx) 

- 2 T (x) + T (x - dx) = 0. So, this is a method in which a differential equation can be converted 

into a difference equation. 

But this difference equation obtained for this point, it can be obtained for other points also. So, 

the equation for this point will involve the local temperature and the neighboring temperature 

therefore; we will get a system of coupled linear equations.  

So, if we write down the equations, we will get point 2, we will get T1 - 2 T 2 + T 3 =0, for point 

3 we will get T2 - 2 T3 + T 4 =0= 0 so on. Well, we are not finding equations for points 1 and 9 

because they are boundary points and we will get boundary conditions for them. 

So, we get a set of linear equations for temperature at the internal points and the boundary 

points can be substituted as boundary equations. So, now, what do we have? We started with a 

differential equation; we ended with a system of linear equations and which can be represented 

as a matrix form, so you get a matrix equation out of it.  



These are the nonzero numbers in the matrix .This is called a tridiagonal matrix and is a sparse 

matrix so whatever is not written in this matrix is number 0.  

So, nevertheless starting from 
𝑑2𝑇

𝑑𝑥2 = 0 we get AT = b ,a matrix equation that is why matrices 

are very important in scientific computing. In scientific computing you do computing to 

understand science, and science in many cases comes in terms of natural laws or some 

constitutive equations which are differential equations ;we can tell them as rate equations.  

We can mention that this is the rate of certain things, rate of change of temperature, rate of 

change of velocity, something like that. Here it is the rate of heat moving through the unit area. 

These rate equations or differential equations can be converted into matrix equations. When do 

we do scientific computing? We have a differential equation we want to convert it into a system 

of linear equations and to solve it.Therefore, the next step which will be important for us in this 

discussion is to how to solve the system of equations. 
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Well, in some cases, like it may not be a simple 1-D problem. In fact, nobody will do scientific 

computing, forget about parallel computing for solving 1 D equation. They can be 3-

dimensional geometry. There can be complex geometry. There can be many other complexities 

involved, for which we need to use this discretization approach, we need to get the difference 

equation.  



See if we have a 2-D problem, we have to use a 2-D mesh system, and the equation we define 

each point by their index i j, but for each point we will get a linear equation. So, for all the 

points we will get a set of linear equations and by efficient mapping of T i, j into a one-

dimensional vector we can get a matrix equation out of this also.  

So, in all cases, where we start with a differential equation we can end up with a system of 

linear equations or a matrix equation. We saw that the error in this matrix representation,  is a 

function of (𝑑𝑥)2 and (𝑑𝑦)2. The distance between the points as it will reduce, we will get less 

error and we will get more accurate representation.  

So, in order to get a solution which will resemble very well with the physical behavior we need 

to take many points, because the distance between the points will then reduce and therefore, as 

many points as we will take our matrix will be larger.  

So, we will end up in a large matrix system if we need to get accurate solutions and therefore, 

the issue will not be only solving the matrix equation, but the issue will be solving a large 

matrix equation. So, the matrix size is large for large problems and we need to find out how to 

solve the large matrices. 
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Taylor series-based methods which are known as finite difference methods. There are methods 

like finite volumes where instead of representing the physical law as a partial differential 

equation, we express it as a flux difference between the surfaces of a control volume.  



Say we have to similarly solve the conduction equation over this 2D geometry, we consider a 

control volume and write that the equation is nothing, but conservation of heat flux across 

different cells. So, we can assume that there is some heat generation per unit volume. So, this 

cell has a volume dxdy and the unit depth 1 total heat generation is Qdxdy and these are the 

fluxes coming out of this surface. 

So, if we have heat generation Q that should be if the flow is steady, if that heat transfer problem 

is steady there is no change in temperature. Whatever is heat generated within the control 

volume is the same as the amount of heat coming out of the control volume. So, the net heat qs 

qe qw qn  are the heat fluxes to each surface multiplied by the area will give us the net heat 

transfer across the surface. 

Net heat transfer; from the control volume that should be equal to the heat generation. In case 

steady flow without heat generation Q = 0. So, we get that summation of the fluxes multiplied 

by the respective area = 0, and now these fluxes can be obtained using Fourier’s law of 

conductivity and we can replace the that by the difference of temperature, and we end up in 

getting an equation involving temperature of the central point and temperature of all the 

neighboring points. 

So, you get a linear equation for one particular point. For the entire control volume ,for each 

centroid of the control volume we get one linear equation and therefore, we get a system of 

linear equations. So again, it can be shown that this is giving us a matrix equation.  

The advantage of going through this particular technique is that if we have a non-Cartesian 

geometry, we can still get divided into multiple control volumes and write flux conservation 

equations and get a set of linear equations like that. The previous method or finite difference 

method is restricted for Cartesian or strictly polar type of geometry, the sides of the geometry 

must be aligned with the axis of the coordinate system.  

But here we can go. We can calculate it for any complex geometry we have only to discretize 

the geometry into multiple control volumes and write the flux balance equation. This is heavily 

used in computational fluid dynamics this finite volume method. Nevertheless, we end up in 

getting a system of linear equations. 
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The other method is the finite element method, which is also applicable for complex 

geometries. In the volume method we saw some idea of extending the numerical method for 

non-Cartesian complex geometries. Finite element method is mathematically very sound and 

due to its strong basics, it can be extended to many complex geometries.  

The idea of finite element method is that; discretize the domain into smaller elements. Assume 

a trial or test solution within each element. So, you do not know; what the solution of the 

differential equation, but assume some function phi which is the solution to the equation and 

assume a behavior of that function within each element. Now the assumed solution is not the 

actual solution, so, there will be some error. You substitute the solution into the governing 

equation, you will get some error. Calculate what is the error from the trial solution and then 

integrate the error over all the elements. Only for one element you are calculating the error 

here, but now calculate it for all the elements and sum them up and integrate it.Then, use 

something like a least square method or some optimization method; so that you can say that 

you put an objective function that the error should be least. In order to get the least error, you 

will get how your trial solution will be valid. So, total error is obtained using integrating errors 

inside each element and the integral is minimized to get a trial solution with least error and by 

that method you get the least error within and you get the best approximate solution. 

This also end up in giving you a matrix equation the advantage is that this mathematically 

sound the element shape which you have considering here can vary ;in finite volume you have 



to calculate flux, we have to see that the neighboring points are perpendicular to the to the inter 

control volume boundary, but here you do not need to look into that it is not based on flux 

calculation and complex geometry can be easily handled.  

Disadvantage is mathematics is difficult, I understand that if you are a beginner finite difference 

you probably made some ideas. Finite volume you probably got some faint idea, but if you are 

a beginner within this one slide discussion you probably did not get could not make a good 

meaning out of what is a finite element method. 

So, mathematics is difficult if I have to explain the mathematics that will be in the 20 lecture 

class itself. So, that is one disadvantage of finite elements, that the mathematics is difficult and 

therefore, the algorithms as well as the coding exercise is more difficult than the previous 

methods.  

In certain cases, we need to know the flow direction. We need to do some mathematical 

modeling using discretization along the flow direction that is difficult here, but for the previous 

methods it is much simpler. 

So, there are some complexities associated with this method; however, this also ends up in 

giving us a matrix equation. So, all the methods we are discussing will give us a matrix equation 

for a physical problem and that is one big group of scientific computing problems that if you 

start with a physical problem you get a matrix equation out of it, then you have to solve the 

matrix equation. 
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Well, one important factor which is associated with converting differential equations into 

difference equations or matrix equations is error. We have seen that in finite difference methods 

there are certain terms which we neglected. We told that this is an error and as the number of 

points will increase this error will reduce.  

So, this is known as discretization error. The error between the differential equation and the 

difference equation is known as discretization error. A large part of the discretization error is 

due to the truncation or omitting the higher order terms in the Taylor series expansion.  

Now, this error will reduce as the distance between the points will reduce, we have seen that 

this error is of the order of dx whole square dx whole 4 etcetera dx is less than 1. So as dx will 

reduce, this error will reduce. Therefore, as we increase the number of points the errors will 

reduce. There is another error which is called round off error which is due to the precision of 

the computer. Say you are calculating pi. If you see the actual value of pi it is a large number. 

It is an infinitely long number.  

There are infinite decimal places in pi. It is because it is an irrational number. But you if you 

are using a single precision computer if the machine it can calculate or it can hold only up to 8 

decimal places. So, pi will be well approximated as this number and if you do your calculation 

you will get nearly the right results , instead of pi if you write 3.1428514 even, we know that 

by just using 3.14 we get good results.  



But we are making some errors, because we are not considering  all the digits after the decimal 

place. We are drowning in numbers after certain decimal places and we are making some errors. 

In each calculation, wherever there is something like an irrational number or something which 

is not an integer or does not have finite decimal places, we are doing this error.  

Now, as large as the problem is, as many points we are having in the geometry as the matrix 

size is large, many rows are there in the matrix, these errors will increase. Because for each 

point I am making an error as we have a greater number of points, we will make more errors. 

So, this is another error which increases with increasing number of points. So, there is a 

tradeoff, we have to find out what is the optimum number of points in which we get least error 

and we try to use that. Fortunately, or unfortunately this number the optimum number of points 

is in practical problems is also a large number. So, we end up in getting a large matrix equation.  

As this is a large number, we I mean we have to be very careful, so that the round off errors do 

not compile up and we get we kill our solution .Also as the equation system will be very large 

we have to use an efficient matrix solver also many cases we have to use parallel computing or 

high performance computing techniques.  
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So, we will come to a solution of the matrix equation. Large numbers of points are required to 

get an accurate solution. This leads to a large matrix problem ;the number of rows can be as 

high as 100’s of millions or billions in the matrix equation.  



Now, we need efficient matrix solvers for that if the matrix has N rows the direct solvers like 

Gauss elimination or LU will require N cube operation. And if there are this is a million by 

million matrix; this N cube operation means 10 to the power 9 operations and in each operation 

if we make an error of 10 to the power – 8, the errors pile up of the order of 10; you will be 

calculating temperature in between 0 to 1 and you have a large error of the order of 10 which 

will kill the problem. 

So, we understand that if we have to solve a practical problem, we have to use a large number 

of points, if we have a large number of points, using direct solvers we will have large errors. 

So, what we do instead , we use iterative solvers iterative, solvers mean we try with a trial 

solution to iterate for a better solution. Each time we had an older solution which is overwritten 

by a newer solution, so the round off errors are neglected in each iteration only we are having 

the final round off error. So, the round off errors are; usually less in the iterative solvers. 
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We will see some of the iterative solvers Jacobi and Gauss Seidel. Let us start with the matrix 

equation Ax = b, i-th row of the equation will be ∑𝑛
𝑗=1  𝑎𝑖,𝑗  𝑥𝑗 = 𝑏𝑖  

If we separate out the i-th component, ∑𝑛
𝑗=1 𝑗≠𝑖  𝑎𝑖,𝑗 𝑥𝑗 +  𝑎𝑖,𝑖 𝑥𝑖 = 𝑏𝑖  . Now, let us assume 

a trial solution x = 𝑥(0) and we further assume that in each equation all other terms except i-th 

term is evaluated using the trial solution. 



So, what will I do? We will consider each equation in the matrix system and for each equation 

we will substitute the trial values in the off diagonal terms and the diagonal term or the pivotal 

term of the equation will be calculated based on these values. So, we find out that 𝑎𝑖,𝑗𝑥𝑗 with 

guess solution is 𝑎𝑖,𝑖𝑥𝑖 = 𝑏𝑖. 
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Using this we can get a value of x.  

Now, we will do it for all the rows since from x1 to xn all the variables will be calculated 

provided a i,i is not 0 that is one important parameter here that the diagonal term of the matrix 

is non 0.However, this x i is not actual solution because these are guess values. So, this will not 

satisfy the actual equation. We will not get the actual equation to be satisfied for all the 

equations. So, what we guessed as this x i, this is not the actual solution, but this will be my 

next case. I will do another iteration using x i. So, all these x is calculated in through this 

exercise as my next case.  

So,𝑥𝑖
(1)

 will be   
𝑏𝑖−∑𝑗≠𝑖 𝑎𝑖,𝑗 𝑥𝑗

(0)

𝑎𝑖,𝑖
  .We will calculate for ,𝑥𝑖

(2)
, 𝑥𝑖

(3)
, 𝑥𝑖

(4)
So , on till it converges 

to the first final solution. 
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So, when we call that this is converged, when we will see that the guess solutions now are 

satisfying the equations and it is usually done after a large number of iterations. 

So, k is the number of iterations, k being sufficiently large we calculate 𝑥(𝑘+1)  and we 

substitute it into the main equation and we will see that each row is giving me 0. There are 

round off errors, this is the convergence problem which has some asymptotic behavior, so it 

will not give me exactly 0, but it will give me a very small number, something like a machine 

precision number.  

At this stage, we will see that 𝑥(𝑘) has converged to the solution x and we will get that the 

maximum difference of 𝑥(𝑘) and 𝑥(𝑘+1) for any of the rows is less than epsilon where epsilon 

is a small number close to the machine precision. Changes in the value of x will be infinitely 

small if we continue the iteration and this is what we know as convergence. 
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Now, this is known as Jacobi iterations. Jacobi iteration is an iterative method which is 

applicable for a large number of matrices which comes from physics-based problems like finite 

difference or finite volume or finite element method. The requirement for the Jacobi method is 

that the diagonal should be nonzero , sum of absolute value of the diagonal term is greater than 

equal to sum of absolute value of off diagonals for each row. There should be at least one row 

where the absolute value of the diagonal term is greater than sum of absolute values of the off 

diagonals and this is usually satisfied for most of the discretized forms or difference forms of 

the governing equations using finite difference or finite element method or finite volume 

method for physical problems. 
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So, we look into each of these rows and we can find out that this is a general iteration loop in 

the Jacobi method, that while calculating x1 we are using guess values of 𝑥𝑗
(𝑘)

 . While 

calculating x 2 we are using guess values of x 1 and guess values of all other terms greater than 

2, x 3 x 4 and so on. 

But x1 has been already calculated there. While calculating x3 we are using  𝑥1
(𝑘)

 and 𝑥2
(𝑘)

 which 

is already updated, because we are trying to converge it, if instead of using the older values we 

use the already updated values we get a faster convergence .  

So, it is observed that while solving for this row  already a number of x s are available up till 

the previous one. These circle variables are already updated, so we can get faster convergence 

if we use the already updated values, and this is known as Gauss Seidel iteration. 
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Instead of using the previous guess values you use the already available updated values, and it 

is shown that we use the same convergence criteria as Jacobi, but the convergence is faster than 

Jacobi, the convergence is done in almost half the number of iterations.  

So, if Jacobi takes 100 iterations Gauss Seidel will take 50 iterations, this is a better matrix 

solver. We are trying to get a more efficient matrix solver, because we try to cut down the 

number of iterations ,and Gauss Seidel can be a way out for that. 
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So, again we can see that the Jacobi iteration method can be represented here that the diagonal 

term will be multiplied with the updated values and the off diagonals are multiplied with the 

guess values.  

So, this can be written in the matrix form that, 𝑥𝑘+1 = 𝐷−1𝑏 + 𝐷−1(𝐸 + 𝐹)𝑥𝑘. 
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Similarly, we can write a matrix expression for the Seidel also, 𝑥𝑘+1 = (𝐷 − 𝐸)−1𝑏 +

(𝐷 − 𝐸)−1𝐹𝑥𝑘 . 

So, whatever we are doing in Jacobi and Gauss Seidel they are basically matrix operations. We 

are taking a guess matrix guess vector and multiplying with something from the splitting of the 

original matrix A, which we are solving and getting the updated values. 
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So, this is like M 𝑥𝑘+1 = 𝑁𝑥𝑘 + 𝑏 ,and we can write that for Jacobi and Gauss Seidel M and 

N has different meaning 𝑥𝑘+1 = 𝑀−1(𝑀 − 𝐴)𝑥𝑘 + 𝑀−1𝑏 or 𝑥𝑘+1 = 𝐺𝑥𝑘 + 𝑓, G is called the 

iteration matrix.  

So, you have a guess solution vector, you multiply it with an iteration matrix. What is an 

iteration matrix? Iteration matrix comes simply from the splitting of the main matrix and add 

with an f which again comes from the right-hand side vector and some splitting of the main 

matrix A and get the updated matrix. 
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So, using this concept, we can get a faster solution. We can see that in each iteration we are 

improving our solution by this amount 𝑥𝑘+1 − 𝑥𝑘   which is  G - I the iteration matrix minus 

identity into the older vector plus 𝑥𝑘, but we are improving the solution in each iteration.  

So, in case we improve, we increase this amount, we get that this is increment in each iteration, 

but we will multiply it with some factor greater than 1 so the increments increase, so that we 

can reduce the number of steps. This is called successive over relaxation.  

That we write 𝑥𝑘+1 − 𝑥𝑘 = ꞷ(( 𝐺 −  𝐼 )𝑥𝑘 + 𝑓) where 1<  ꞷ < 2 . ꞷ <2 for stability ꞷ >1 for 

faster convergence. This is known as the successive over relaxation step.  

These methods give a much faster solution with the proper choice of omega, so this is a more 

efficient method of solving the equations. 
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These are basic iterative techniques which you have discussed here; they are very simple, but 

they are little more involved iterative techniques based on Krylov subspace methods or 

projection methods which can give us a much faster solution. We need faster solutions because 

we need a smaller number of iterations in which we can solve the equation system.  

One of them is the conjugate gradient method, we can see the conjugate gradient method, here 

it also starts with a guess solution and calculates a guess residual. What is the error based on 

the guess solution b - Ax0 if x0 satisfies the equation this will be 0, but as it’s a guess solution 



it will probably not satisfy the equation. So, there will be some error and sets an auxiliary vector 

and then follows a certain procedure by which it can update the guess solution, it can update 

the error and it can update the auxiliary vector. Over the iterations there is an instance in which 

you see that xj + 1 has converged to the final solution. This is the very first solution. I will show 

you some test results that in a much smaller number of iterations you get the solutions. But 

interestingly, this method requires a matrix vector product. If we think of the matrix operations 

which I have shown in the last few slides of Gauss Seidel and Jacobi there are also matrix 

vector products involved. 

So, all the matrix solvers, especially the iterative matrix solvers, require matrix vector products, 

and if it is an N by N matrix and the vector is N by 1 the matrix vector product will take N 

square operations. This is a large number of operations and it is important to parallelize this 

part if you are thinking about using HPC techniques. If you remember in openMP discussions 

we looked into parallelization of matrix vector products.  

This is important because these are usually the most time consuming and most costly steps in 

the matrix solvers or in the scientific computing algorithms. So, it becomes important to 

parallelize. We will see some of the techniques in the subsequent classes. 

(Refer Slide Time: 41:53) 

 

Well, I just give you an update that if we have a 16 by 16 matrix Jacobi took 1,253 iterations 

,Gauss Seidel took almost half 620 iterations, SOR took 200 iterations and conjugate gradient 

took 32 iterations.  



If I have a large matrix 256 by 256, this is large, but this is not as large as the largest matrices 

we usually deal with practical problems. However, Jacobi took 2,15,000 iterations, Gauss 

Seidel took almost half of that and conjugated gradient took only 484 iterations. 

So, conjugate gradient is a very fast way of solution. SOR is in between conjugate gradient and 

Jacobi .In conjugate the number of iterations is of the order of the number of rows of the matrix. 

That is one important observation. Now you have operations per iteration. Within each of 

iteration you have to find out matrix vector, products etcetera, so, you have to do many 

operations 

In SOR this operation is N2 + 4 N, in conjugate gradient this operation is N2+N. So, you do 

order of N of iterations and N square operations in each iteration you end up in having order 

of N cube operations. 

So, the number of operations in any matrix solver is very high and therefore, while doing HPC 

,any scientific computing problem which involves matrix solver large class of scientific 

computing problem involve matrix solver; it is extremely important that we look into the matrix 

solver and parallelize the matrix solver part and that is what we will try to do in the subsequent 

classes. 
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For the reference you can look into Yousef Saad, book iterative methods for sparse linear 

systems from SIAM and I have another NPTEL course called matrix solvers you can access 

that and can find more details about the matrix solvers. 
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So, come to the conclusion, discretization of differential equations for physics-based problems 

are discussed, some iterative solvers are introduced and we have compared different solvers 

based on their convergence and the number of operations required for them. 


