
High Performance Computing for Scientists and Engineers

Prof. Somnath Roy

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Module - 03

Message Passing Interface (MPI)

Lecture – 23

Communication using MPI (continued)

Welcome to the class of High-Performance Computing for Scientists and Engineers and we are

discussing MPI programming where, which is the 3rd module of this course. We are discussing

Communications using MPI.

(Refer Slide Time: 00:38)

So, continuing from our previous lectures where we have discussed point to point

communication and protocols for point to point communication, we will see the other aspects

like array handling, blocking, non-blocking calls and then we look into collective

communications and its protocols.

(Refer Slide Time: 00:55)

When we are sending an array through MPI we have to specify the array address and the size

of array and we understand that in any practical program we are not just going to send one

small information or an integer or a float. We will send a pack of information, we will send a

number of variables, vectors, matrices, etcetera. So, you have to send an array and say what is

the size of the array. It can be understandable that this send means that one dimensional array

will be sent. As this is a pack of information, we will send the location and the size. So, as I

have mentioned earlier also when sending data, it can be optimized in terms of less overheads

and the efficiency that if we can pack everything in a contiguous single dimensional array and

tell the address and the size of that array.

This is something we will again discuss in the matrix algebra programs using MPI later in this

class. We will see that if we have to transfer a matrix from one computer to another computer,

one processor to another processor, we will use a single pointer and put everything in a single

dimensional array and try to transfer it ,that is the most optimal way.

In looking into the same thing, if we are sending an array, we have to specify the location, the

address of the array, size, type of the data type, where we are, sending it and the matching tag

and communicator.

So, process 1 rank 0 will send to process 1 with a tag 0 and process 1 whose rank is given as 1

that will receive information with tag 0 from process 0 and it will put it in num 1.

What is being sent from num that will be put in num 1 and the size is important and the data

type should match ,then it will execute another send and send data from this processor with tag

1, to process 0 and process 0 will receive this data with tag 1 from process 1 and store it in num

1.

So, process 0s num will be process 1s num 1 and process ones num will be process 0s num 1,

we can see that the address and the size we mentioned earlier ,that it is important to mention

the address and size of the of the array that will be sent and that size and type combo should

match and the receiving address should be given, that is a way of transferring of array. Then

we can see what process 1 has received from process 0 and what process 0 has received from

process 1.

Within the process, because this is a loop, it will write from 0 to 9, the loop will execute

accordingly. These are the ways how an array can be sent, that you specify the address ,size of

the array and while receiving, you specify the address of the received buffer and the size, and

accordingly number of elements will be received. But these arrays when it is being received ,

the malloc has to be performed and that particular array dimension has to be declared otherwise

there will be segmentation fault or stack overflow.

(Refer Slide Time: 05:22)

Send and receive calls are blocking. A send request is complete as the send buffer is free after

receive is done. The send buffer can be made free even before receive is done for certain cases,

but if you are sending a larger array send receive is complete for normal receive operations.

So, what one processor is trying to send, another processor has received it ,the senders’ buffer

is free and the process is complete, else the process cannot complete, and the process cannot

do next work. If send has no matching receive it results in a bottleneck and that is exactly what

is happening here. So, in this program the same num variable will be send and num 1 variable

will be received .What will happen in that rank 0 is trying to send num at the same time rank 1

is also trying to send num,so, both the processors are trying to send at same instant and this is

very interesting. Now, process 0 is sending to process 1 process 0 is sending num to process 1

with tag 0. Each process will execute the comments as it follows one by one. So, when it comes

to process 1, at the same time process 1 is trying to send a variable name num address num to

process 0 with tag 1;so, both are sending. I am giving my friend an envelope, he is also giving

me an envelope, but none of us can receive it (we assume that we are working with one hand),

because the processes are only executing one instruction at a time. So, both of our hands are

full and none of us can receive therefore, what will happen? We will stop here. This will go on,

as both are holding the envelope and standing in front of each other.

So, process 1 is trying to send data, process 0 is at the same time trying to send data, but nobody

is receiving at that instance and this will give us a bottleneck. If we run this, it will not produce

any output. We will see something like an infinite loop ,the executable is running and nothing

is happening, because the same call from process 0 cannot be completed and process 1 send

call cannot be completed.

Unless, process 1 will complete its send call it cannot do the receive operation or unless, process

0 send is complete it cannot do the receive operation. So, none of them can execute the receive

and therefore, it will be a bottleneck. So, this is a situation which might happen especially, if

you have large data. Large data means; if the data size is small it might still work, because we

see that some of the data is waiting at the buffer in the interconnect. If some data is sitting at

the interconnect buffer it still might work, but if there is large data, then this data is not small

to sit in the interconnect buffer. So, the entire data is in wait, none of this data is being received

, none of the send is complete, and it will not produce any output. So, the process says 0 sends

a data packet, and process 1 does too. No one is free to receive it both are doing send. Send is

a blocking call that means, if process 0 is blocked unless, this send is done process 0 cannot

execute the next statement.

Similarly, process 1 is blocked, unless this send is done ,it cannot execute the receive statement.

So, none of the received statements cannot be executed. Therefore, the data transfer cannot

take place across the processors and send is incomplete till others can receive it and others

cannot receive it, because others are also hanging at the same place it has another same

command which is incomplete, because the present processor cannot receive this data.

This is something which we will try to avoid in our MPI program that if data transfer happens

between two processors at the same time both of them should not send data or if one is sending

data other will receive first and if one is receiving data the other will send first.

So, there has to be a staggering of send receive in between the processors who are

communicating in between each other and there are many instances when both the processors

are interchanging data .A is giving some data to B,at the same time B is giving some data to A.

So, one will send, another will receive and send receive should have a standard way hence, a

bottleneck. This is a very serious issue in MPI programs and all the programmers must be aware

of that and as I said in MPI, it is the programmer who is writing these instances. It is

programmer who is writing the send receive commands which will be send, where it will be

send, which place we will store it, what is the tag, at which location it will be sent, what is the

type of the data, etcetera; programmer has lot of responsibility in MPI program. So, you must

be very well aware that if he does something wrong in a writing send receives command there

will be a bottleneck.

(Refer Slide Time: 11:14).

How to avoid a bottleneck? The most standard way is when the even one receives the data odd

one will be sending. So, an odd processor or an even processor is first sending it, another is

receiving it and the other processor is first receiving it, another is sending it. I have actually

written it reversely. The even one is sending the data and receiving the and then receiving it.

The odd one is first receiving it; the odd one is first receiving it and then sending the data.

So, rank 0 will first send the data and the odd one the rank 1 will first receive it .Also rank 1 to

first receive and then do send; that means, rank 0 will first do send and rank 1 will first do

receive. So, rank 0 send is complete as rank 1 has received the data, then rank 1 the odd one

will send the data and the even will receive it.

So, if you have a large number of processors doing an odd even for send receive across different

processors that helps. We have just staggered the send receive order, 0 is first sending then

receiving, 1 is first receiving then sending. So, one send is finished by 0 ones received and

then one sends then both are free. So, one can send and 0 can receive it .

First, 0 sends the data packet. It receives data from processor 1 after the send is complete.

Processor 1 receives the data packet and then sends the other data pack .Odd-even send receive

avoids the bottleneck .If we run the program, we will see that processor 1 has received data

from processor 0 and processor 0 has received the data from processor 1.

So, though in MPI, multiple processors are there and they can execute the job in their own time,

but there is some synchronization, because when two processors are sending and receiving data

both of them will be free at one instance once the send is complete. So, first processor 1 and

processor 0 are free once processor 1 has received the data and the next operation will be

processor 0 is receiving data from processor 1.

These data transfer sending and receiving by 1 processor cannot be done parallelly. So, when

two processors are sending and receiving data between each other, there will be some

sequentially in that ,one send and receive will be done, then another receive and send will be

done and that helps us to avoid the bottleneck.

(Refer Slide Time: 14:21)

The other way he is using a non-blocking call. If we are using non-blocking call like Isend,

Irecv, send can be finished even before matching received is executed, this is achieved by use

of buffer ,there is some buffer in between the processors in the data transfer process and as we

execute Isend then the data goes to the buffer. So, processor 0 first executes Isend then Irecv ,

processor 1 also executes, Isend, and Irecv . So, this data is sending somewhere in the buffer,

so, though processor 1 has not received the data sent by process 0, once it has sent that entire

data (we have increased data size to 10 to the power 6 million size array), everything can go

and sit in the buffer. So, as processor 0 has send the data it is sitting in the buffer, it can do

something else as its buffer is free. Similarly, processor 1 has send the data ,it is also in the

buffer processor, so it can do something else. Therefore they can both send the data at the same

instance ,the data is waiting in the buffer and they can parallelly receive the data. It is more

flexible and more parallelized.

We can see both the processors send the data and the status message is not present here rather

there is a request message of MPI request is given there. So, it is a request of sending data

which finishes the job processor 0 wants to send data, it does not finish the send it sends a

request to send the data to processor 1 and it is free it puts the data in the buffer sends a request

puts the data in the buffer does its next work. Processor 1 similarly looks into the request and

receives the data, but before that it has also made a request, put its data in a buffer and when to

receive the data.

(Refer Slide Time: 16:26)

These are non-blocking, so processors can start receiving before the send is finished from

another processor. This happens like during communication data is sent to a buffer and for the

processor through Isend processor 0 and say processor 1 has executed Irecv it will receive data

from the buffer and it can do something else after that.

So, once processor 0 has send the data in the buffer it is free to do the next computation and as

the data goes through the network cable it takes some time, the forward data transfer time that

we have discussed earlier as it goes through the network .But that particular time processor 0

is still active and it can do its own computation. So, this function therefore, can be used for

overlapping communication with computation. Communication has started, it has put this data

in a buffer and it can do its own computation. So, though there is certain communication

overhead, at the same time computations are going on. So, these overheads can be minimized.

So, this is a more optimized and efficient way of transferring data.

However, it might result in computing wrong values, because many times you while computing

in one processor it needs data from the other processor, but if Isend and Irecv is giving this

data transfer is happening through buffer it is computing something, but it has not received the

right data in between that.

So, there is less synchronization than the earlier simple send receives. It was very synchronized,

one send is not complete before the other has received it, but as this is less synchronized you

have to be careful. You have to put barriers or put different synchronization calls, so that there

is no error in the computation or you have to be sure that the data that is being communicated

is not being required during the computation, because computation and communication are

overlapped in this particular case.

Synchronization barriers might help and sometime for more synchronous transfer you can use

MPI Ssend and Srecv which says that the matching receive and matching sent has to be

matching receive has to be finished whatever be the data size before the next communication

it is more synchronous than simple send and receive, but it has high overhead, but this

synchronization is also sometime important.

This, Irecv, Isend are helpful and optimized also, but you can avoid them by programming with

simple send receive; you just stagger the send receive arrangement then you can avoid

bottleneck. Irecv and Isend simply help you to avoid the bottleneck and increase your

efficiency, but even without using Irecv Isend, with simple send receive you can do that.

 MPI is small, only the six functions which includes simple send and simple receive you can

write any parallel program, but if you want better performance or if you want more flexibility

you can get some other MPI calls like Isend and Irecv and can get better performance.

So, that is why MPI is small, it has only six functions by which you can write any MPI program,

but it is large, because you can pull other functions into the program and make it more flexible

and more optimized.

(Refer Slide Time: 20:00)

Now, we come to another important part of the model of communication which is collective

communication. Collective functions involve communication among all processes in a process

group .Instead of involving two specific processes to communicate in between them, collective

communication gives us a single communication call which helps communication of data

across many processors or across all the processors in the communicator. Like if I write an

email it goes to the person I am intending and he receives the data. If I announce something

with a hand mic, it goes to many people; many people get this information at one go.

So, collective communication uses the topology of the network and sends data in one function

to all the processors. One is the MPI_Bcast ,it is like taking data from one processor and

communicating it to all the processors in the communicator. It’s simply like speaking with a

microphone and using a loudspeaker, so that everybody can listen to it. Say processor 0 has

some data ABCD ,if it uses MPI_Bcast this data is copied to all the processors in the

communicator.

So, inside MPI_comm_world how many processors are there everybody gets this information.

You do not need to do point to point communication from processor 0 to processor 1, process

0 to processor 2, and processor 0 to processor 3 and do send and receive in between them,

because all the processors will get the data. This is more optimized, because this is using the

topology of the network ,the network is itself propagating the data to all the processors ;taking

data from one process and propagating it to all the processors. Another can be MPI_reduce

which combines data from all the processors and returns the reduced value to root or we

mention the processor id, usually it is, rank 0 process.

So, there are A B C D in different processes ;you write MPI_reduce with a MPI operation sum

A + B + C + D goes to processor 0.You can do it using send receive also. I said like these six

functions; we have discussed earlier, MPI_init, MPI_finalize, MPI_comm_size,

MPI_comm_rank, MPI_send, MPI_recv, you can do anything with that. But if you want to do

it in a more optimized way, you use collective calls or like earlier, we said Isend Irecv and

other calls.

What is the optimization here? If we have to do this using MPI send receive, all the processors

can send their data to processor 0 and then processor 0 will add up the data, but that is using

some sequentiality in data transfer, some send receive operations, multiple operations by the

processors, etcetera. It is more complex in terms of writing the program as well as less

optimized, but when you are using a collective call it is more optimized, because it takes the

advantage of the behavior of the network in propagating data across processors or taking data

from one processor and throwing it to multiple processors. So, less overhead is there also it is

much simpler in terms of programming.

Instead of MPI_reduce, if you do MPI_allreduce, all the processors get this value. So, in

MPI_reduce only processor 0 gets the sum in MPI_allreduce all the processors will get A + B

+ C + D that is propagated to all the processors. If you use any operation with reduce it goes to

only the 0th processor or the master processor. If you use all reduce the reduced data goes to

all the processors, and we get much less overhead ;it's a more optimized call.

In many numerical algorithms send receive can be replaced by Bcast and reduced and these

improve both simplicity and efficiency with higher number of processors. So, if we have a

large number of processors instead of doing many point to point communication a collective

communication is an efficient way to do it, because it's optimized using the characteristics of

that particular network .It is optimized as well as a simple program.

(Refer Slide Time: 24:59)

So, these are the right calls for a programmer to write. One example is that there are multiple

processors and the integer number is 0 for all the processors.

Processor 0 has given that integer to be a number and then all the processors are asked to write

the number before doing broadcast. There is only one broadcast, which takes the number

,address, the number size , MPI integer from processor 0 it will be broadcasted and asks all the

processors to write it.

If we do send receive, you have to take the number one and write four send commands and

they would have been executed sequentially, because processor 0 is sending number 1 to

processor 1, processor 2, processor 3;one by one they would have operated and he should have

received it.But here it’s more parallelized version of sending and receiving. Then you will see

that before broadcast processor 0 has number = 1 others have number = 0 after broadcast

everybody gets number = 1.

We can see another function called MPI_barrier. MPI_Barrier is a blocking call. It is for

synchronization across the processors. When I put MPI_barrier all the processors have to come

up here, write this and then only Bcast can be executed.

Whenever we put MPI_barrier all the processors will come up to that state and everybody is

waiting (it is like an OMP barrier), till the others have finished up to that step and then the next

step will happen. Interestingly, this is a collective synchronization that the entire communicator

will wait till other processors have finished, so it also goes in the basis of a collective

communication.

(Refer Slide Time: 27:25)

There are other interesting collective communications which are scattered and gather; scatter

gather helps in distributing and collecting data among many processors .MPI scatter distribute

data from one processor to all in the communicator .Like processor 0 has this four data A ,B

,C, D. If we use the scatter then processor 0 retains A and other processors evenly get part of

the data, B C D goes to other processors.

So, if you have an array and you want to share the array to different processors using a scatter,

it will be scattered to all the processors. MPI_gather will do the opposite; it will collect data

from all the processors. The processors have ABCD and MPI_gather will do the opposite; it

will collect data from all the processors and send it to the root or id = 0 process.

You can appreciate that they can also be done using send receive command, but this is a more

optimized and simple way of doing it.

So, parallelization specially in this API’s MPI as well as OpenMP where doing it simply also

helps you to do it efficiently. However, you need to know the right commands, you need to go

through the manuals, find out the right protocols/ semantics and do it; but if you can do it in an

optimized way it is also simple to write the program. Whereas, in sequence single processor

programming the simplest way is not optimized, we have to do something else.

There is something called MPI_allgather. If you do MPI all gather this copy will go to all the

processors. So, any collective communication with all means that not only the root process, but

all the processors will get a similar copy of that. These are very helpful protocols; we will see

some examples in subsequent classes.

(Refer Slide Time: 29:51)

Now, many times you do not have four valued arrays and give it to four processors. Many

times, you have large vectors which are to be distributed among a few number of processors

so each processor gets a part of the vector, and the call is MPI_Scatterv. It distributes a vector

from the root process to the others in the communicator. We have an array asend and this is a

long array and it has to be distributed among four processors. The first processor will get four

elements. So, the length that will go to the first processor is 4, then the next processor will get

5 elements ,the length is 5, the third second processor will get 3 elements the length is 3, and

the four third processor has length 7. So, this is a length variable which is also send with the

array and the displacement or the location of the first element of that array which will be the

first element on the corresponding processor. So, loc and lengths are the arrays which are also

to be called in the Scatterv and the main array is asend .All the processor will receive and will

get a local array of brecv and their local lengths will be output of this. So, len b has to be

matched with this len or this will be the output of it. So, the total size is the summation of all

the lengths , the data type is MPI int, processor 0 is sending all the processors inside

MPI_comm_world.

Similarly, there is MPI_GATHERV which will do the reverse, it will collect vectors from all

the processes and send it to one the 0th process or root process. In MPI_ALLGATHERV all

the processes will get the combination of the vectors. These are very useful commands in matrix

vector operation

So, in GATHERV each process has a different part of the array that their name should be the

same for each in local process and then with all GATHERV each process will get a sequential

combination according to the processor id of the array.

(Refer Slide Time: 32:42)

Reduction is an important call. It starts with a send message, send buffer ,returns a receive

buffer, takes the count , number of data there, what is the data type, what is the MPI operation

and the count means, what is the count of the data in each processor, MPI operation and what

is the id of the root processor or which should get the reduced value through a communicator.

Output parameters are the address of the receive buffer. Input parameters are the send buffer,

the number of elements in the send buffer ,the MPI derived data type, the reduction operation,

addition summation, addition multiplication, finding, minimize, finding maxima, etcetera and

the id of the root processor will get the reduced value. If you use all reduce like ALLGATHER,

all Scatterv, ALLGATHERV, entire data will come and the reduced value will be copied in the

entire set of processors , all the processors will get the same reduced value.

These are few reduction operations, MPI MAX; returns the maximum element, MPI MIN;

returns the minimum element across the local value, MPI SUM; sums the elements, MPI

PROD; multiplies the elements, MPI MAXLOC; finds out what is the maximum value and

which processor has the maximum value MPI MINLOC; returns what is the minimum value

and which processor has the minimum value.

(Refer Slide Time: 34:15)

So, there is an example that a1 is cos(myrank* pi/nproc)and all reduce will take these a1 values

and find out what is the minimum of that. a1 is different for different processors, all reduce will

find out the minimum of that and all the processors will get the minimum value. So, it finds a

minimum of a1 for all the processors local memory and stores it as a.

So, if we execute it in 8 processors, we will get the a1 is different in different processors. It

starts maximum 1, minimum is - 0.92 and a which comes after all reduce is - .92 for all the

processes.

(Refer Slide Time: 35:23)

So, from all local ids we can find out what is the minimum, what is sum etcetera and these are

very helpful in scientific computing exercise. We have earlier discussed pi programming;

finding out the value of pi using numerical integration. So, all local sums can be summed up to

get a global sum using MPI_reduce or MPI_allreduce. There is another interesting data transfer

protocol which is a combination of scatter with reduction and this is MPI_reduce_scatter, this

is a combination of MPI_reduce and MPI_Scatterv.

So, what does it do? The different processors have different arrays and then it uses a reduction

operation to get a sum of the arrays of all the processors and the reduced array is distributed in

the processors using a scatter.

It first uses a reduction, it uses MPI_reduce type and then this reduced type is distributed into

multiple processors. Then you can go through it and find out that the number of inputs like

send buff is the send array and receive buff is the output which will be given to all the

processors ; and these sizes in different processors are different also.

What is the receive count? Receive count is an input, what will be the size of the arrays in

different processors that you have to specify that each processor will get this array and based

on the received count it sums up the receive count and finds out what is the total size of the

array and one by one. So, first processor will get what is receive count for processor 1, then the

processor will get what is receive count for processor 2.

So, using that it also finds out the displacement that when first processors data will be finished

and next processors data will start. So, this is also a very optimized call and quite well used in

matrix vector operations and in matrix algebra calculations.

So, reduction operation can be also combined with scattered operation therefore, multiple MPI

collective calls can be combined and final output can be obtained. It becomes simpler as well

as anything which is simple to write is more optimized in MPI programming. So, it makes it

simpler as well as it is more optimized.

(Refer Slide Time: 38:07)

We have discussed about a number of collective communication calls also and I said that you

can go through the ah Lawrence Livermore Lab tutorial or William Gropps book or any good

reference books and you can see number of functions exist on both point to point and collective

communication using MPI and all of them has their own utility in optimizing the program and

writing the MPI program in a simpler way.

However, again with simple send and receive you can also parallelize any algorithm in

distributed computing architecture and write any MPI program.

(Refer Slide Time: 39:05)

But it is advisable that you do it in an optimized way and use the right collective communication

operations. So, we come at the end of communication using MPI. We looked into point to point

send receive data transfer with different variable variants and we looked into possible

bottlenecks. We looked into collective communications and reduction operations using MPI.

So, I believe that I have given you enough background on starting to write your own MPI

program. So, in subsequent classes we will discuss about writing MPI program on simple

exercise like numerical integration and then we will go to little involved exercises like matrix

vector products and then we will see how we can efficiently write , iterative matrix solvers for

large problems using MPI that is that will be the goal while learning MPI for distributed

computing

Thank you.

