
High Performance Computing for Scientists and Engineers

Prof. Somnath Roy

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Module - 01

Fundamentals of Parallel Computing

Lecture - 02

Architecture for Parallel Computing

Hello everybody. I welcome you to the second class of our course High Performance

Computing for Scientists and Engineers and we are discussing the first module which is

Fundamentals of Parallel Computing. As the name suggest, high performance computing

is a technology which is being often deployed by people who are working in different

backgrounds of science and engineering and other application areas. So, this group of

researchers or engineers or application people they often do lack a background in

computer science.

However, we understand that high performance computing is something which is of

course, one level complicated than simple computing or using a single computer using

your own desktop or even using a very high end personal computing system and it is

usually multiple processors and multiple computers connected together which need to

communicate across themselves which need to be deployed to solve a problem in using a

synchronization among themselves.

So, the high-performance computing infrastructure typically require certain amount of

understanding of computer architecture and some computer science basics. But we

understand that the people who will utilize this high-performance computing

infrastructure are people without computer science basics.

Therefore, while discussing high performance computing especially while discussing

different algorithms in high performance computing and seeing that how simple program

which is supposed to be done on a single PC can be further developed into a high-

performance computing program or a parallel program.

It is important that we also appreciate some of the basics of the fundamentals of parallel

computing infrastructure including its architecture, including its hardware and including

the software which gives the foundation of parallel computing. It is also important that

we appreciate that what is the performance of a parallel computing system we which we

are using combining all the hardware software and other back backend issues and we

also understand that how when we develop a parallel computing program when we write

an algorithm which is supposed to work in a parallel computing architecture.

Is it utilizing all the benefits of the system that again includes the hardware and the

backend software’s, is it including all the benefits of that? If even if I am an application

engineer, but I am not quite sure about these basics I might end up doing things wrong

and my application can be hampered.

So, it is important that we understand some of the basics or fundamentals of parallel

computing including both hardware and backend software, algorithms for parallel

computing, some of the basics on the architecture also.

But again while saying so, we understand that it is the job of the computer science

background scientists and engineers to provide support for high performance computing

and to come up with new developments in the area of high performance computing

which can be utilized by the people who are coming from the application side.

So, people with computer science background they also need to understand that what is

the performance of scientists and engineers working in HPC or High-Performance

Computing. So, it’s important to have a bridge between them and therefore, we have

developed in this course also for people with computer science background and for

people without CS background it is important to revisit some of the basics of parallel

computing. And that is why we are discussing this particular module fundamentals of

parallel computing and we cannot avoid having some discussions on the architecture of

parallel computing.

Again, while saying so, I must acknowledge the fact that computer architecture is a very

vast subject, it is at least a semester along undergraduate course in computer science and

engineering and it has many developments and it can go to much higher level. However,

we have picked up only those areas which are absolutely essential in order to understand

parallel computing. So, our focus is to learn high performance computing form from an

application scientist or application engineer’s perspective.

When we have this job setup, what are the basics we do need? And in order to learn that

basics we need to revisit or we need to revise some of the basics of parallel computing

including its architecture, including the memory models, including the programming

models, including some of the parallel algorithms and including some performance

metric issues.

So, our focus is to learn high performance computing for from an application point of

view therefore, at least three fourth part of this syllabus of this course will be spent on

learning programming using different high-performance computing infrastructure shared

memory distributed memory GPU that is, learning open MP learning MPI and learning

CUDA programming.

Again, as this program will run on a high-performance computing infrastructure, we

need to learn about the architectures of high-performance computing infrastructure and

we are starting that discussion. So, in this particular set of discussions in today’s class

and the subsequent classes we will learn about architecture for parallel computing and

these are the topics we will go through it.

 (Refer Slide Time: 06:54)

We will first focus on architecture of a sequential computer. Then we will see what is an

interconnect networks because we understand that if multiple processors are working

together, it is required that they need they communicate in between them, it is required

that they do their job with a synchronized manner.

It might be often desired that one processor sends some data to another processor and

another receives, (Refer Time: 07:19) which will be done through an interconnect

networks, which are basically networks which connects multiple processors. So, we will

learn about the networks then. Then we will see 3 important components of HPC

infrastructure, one is processor array another is multiprocessor and multi computers.

Again, we will focus more on multi processors and multi computers because when we do

an application using HPC in today’s world, we are either using multi processors or using

multi computers and then we will see the large HPC platforms which are HPC clusters.

We will also quickly see what is in a GPU or Graphics Processing Unit and when we will

do CUDA programming later we will see GPUs in much detail.

We look into communication costs which is extremely vital in understanding high

performance computing because as I say high performance computing means multiple

computers or multiple processors some way connected working together to solve

different parts of the same problem.

While doing that they need to communicate across themselves, they need to do

synchronization, they need to send data from one processor to another processor or they

need to write data to a common global memory space which requires certain amount of

computation communication among themselves, which has a time delay which has some

cost in terms of computing.

So, we will see what is communication cost for an HPC program and what are the

different components of the communication cost when we are running our own HPC

parallel program, when we are solving a large problem in an HPC system even if the

program is developed by somebody else. We should be very careful about the

communication costs because this when we are running the sequential program or when

we are running program in a single simple PC, this cost was not there it’s a single

computer which is solving the problem in communication with the memory.

So, it did not have any communication cost, but when we are running many computers

together in parallel to solve a same problem, we are introducing this cost which was not

there earlier. Therefore, it is also important that we keep a check on the communication

cost and we will look into it in detail. Professor Flynn long back has specified certain

taxonomy to classify different architecture of parallel computers, we will go through this

Flynn’s taxonomy and we will see that they are very much valid even in today’s world.

 (Refer Slide Time: 10:02)

So, first we look into architecture of sequential computer. When we say sequential

computer it’s a simple computer that we discussed. It is a single CPU and a single

memory unit. Sequential means give any job it will process the instructions in a

sequential manner one by one and there is no parallel processing of the information of

the instruction, you give an instruction it will process it and next instruction will be

followed only once the first instruction is finished.

So, even when we talk about sequential computer, we are not discussing about today’s

multi core computer, we are discussing about a computer which is one CPU, inside

which there is one arithmetic logical unit which is connected with a register and a control

unit. So, this registers they take small amount of memories and as the arithmetic logical

unit need to work on these memories and give the output. And this sequential computer

CPU takes data from a dynamic random-access memory or dram.

So, when you go to buy a CPU or when we go to buy a computer, we look for the CPUs

in terms of CPU speed that is how many gigahertz processing cycles that CPU will give

and what is the size of this dynamic RAM and what is its speed . Then this connected to

the CPU memory arrangement this is what is in the motherboard of the computer, this is

connected to an I/O or Input Output controller ,to input output devices, hard disk drives,

the mouse keyboard monitor etcetera network modem and if it is in an embedded system

it is connected to instrumentation ,to robots or to some of the actuators or sensors which

are working.

Now, when this is working, there is an instruction stream which follows the input device.

Basically, it launches the program through the control unit and an instruction stream goes

to CPU, it takes some data from the memory and processes the from the main memory

RAM and then processes the instruction here. These two streams of process are

important, one is the data stream the data is fetched from memory goes to the CPU and

CPU returns the data back, another is instruction stream that this set of instructions are

given to the CPU, it processes those instructions on the memory date on the data stream

on the data that it has fetched from the memory.

So, if we look into the performance of the sequential computer, there are two

performance matrix and one is the processor speed. As I said when we go to market and

try to buy a computer we look into the processor speed that how many giga Hertz is the

speed of the processor and if we say 1 giga Hertz processor; that means, one cycle of

electric pulse to this processor takes 10 to the power minus 9 seconds. So, in 1 second

there are 10 to the power 9 cycles and we assume that in one cycle of electricity through

the processor there are 4 floating point operations done.

Floating point operations means you simply take numbers do something with the number

minus ,addition, division, multiplication some operation with the number that is a

floating-point operation, it is done again using the logical gates present in the CPU. And

therefore, if there are 4 operations in one cycle, the 1 giga Hertz processor typically does

10 to the power 9 cycles in second 10 to the power 9 cycles in 1 second.

So, if there are four operations 4 floating point operations in one cycle, then one second

it will do 4 into 10 to the power 9 floating point operations or 4 gigaflops, speed is called

gigaflops. FLOPS is one of the performance matrices here which means floating point

operation per second. In 1 second, it will do floating point it will do operation on 10 to

the 4 into 10 to the power 9 floats, the speed is 10 to 4 gigaflops well. We actually do not

get that high speed in a normal sequential computer and we will see why.

(Refer Slide Time: 15:02)

So, if we talk about RAM there are two important performance metrics in a RAM one is

the RAM bandwidth; that means, when the CPU control unit fetched data from the

RAM, at one cycle again it does that in cycle it gives one set of instruction to the data

stream and one packet of data comes here. And how much data is fetched in one cycle?

So, it is given as how many bytes or how many words are fetched in each cycle that is

the bandwidth.

And the next important thing is latency. Time taken by the memory to get the instruction

from processor and return data from it. So, memory gets the instruction from the

processor that it needs certain amount of data memory, returns the data to the processor

and this is done through the connectors PCI bus etcetera .How much time is required for

that? That time is called latency why is it called latency because when processor has

asked for certain data, it goes into latent state till this data is obtained from the RAM and

that that is why it is called latency because this is a time in which processor is actually

not waiting it’s in the latent state and waiting for the time of for the data from the RAM.

And now when again we go to buy a RAM, we look about the RAM speed how many

RPMs RAM etcetera. So, later this latency is somewhere related with the RAM speed

looking into the RAM speed we can estimate that what should be their latency in the

RAM in many cases there are other factors also.

(Refer Slide Time: 16:44)

So, if RAM latency is high it will hinder the performance; that means, the processor has

to sit idle, though the processor can perform large number of operations in a segment, but

if the RAM introduces some latency that time the processor cannot perform the

operation.

It is waiting for the data, say the I ask the processor to do A is equal to B plus C. So, you

will be asked from the RAM what are the values of B and C? The RAM will send these

values the it will add the values and return the value A to the RAM. So, taking the values

B and C and returning the value A, this will take certain amount of time during that time

the processor cannot do anything else, it has not finished A is equal to B plus C. So, it is

sitting idle.

So, if this time is high if RAM latency is high, performance will be degraded. So, we can

see a small example problem, 1 gigahertz processor with 4 operations in a cycle is

connected with a RAM and the dynamic RAM dram has a latency of 100 nanoseconds.

So, once in processor asked for some data, the RAM will take 100 nanosecond time to

send the data to the processor. Now, the processor is 1 giga Hertz and does for a floating-

point operation in one cycle and there are one gigahertz means there are 1 giga cycles in

a second, ideally it should give 4 gigaflops speed we have seen it in last slide now for

every operation. So, ideally there will be 4 into 10 to the power 9 floating point

operations in us in once again, but for every operation the request for data from the dram

and the data fetching it will take 100 nanoseconds.

So, one operation cannot be done unless this 100-nanosecond time is over. Therefore,

once one operation is done ,the processor has to wait for 100 nanosecond and it will get

the data and finish the next operation. So, though it can do 4 gigaflops operation flop

operation in a second, for every operation it has to wait for 100 nanosecond therefore, in

one second it can do only 1 by 100 nanosecond operation because it is once one

operation is done it is waiting for 100 nanosecond to get the data.

Once one instruction set is launched, its waiting 100 nanosecond to wait to get the data.

So, the frequency of each operation is 1 by 100 nanosecond in 1 second it can do only 10

into 10 to the power 6 or 10 megaflops operation. Therefore, from for from 4 gigaflops

speed which was the theoretical speed considering no RAM latency, RAM latency

reduces the speed to 10 megaflops much smaller the smaller by few 100 times.

Now again 10 megaflops as we do not get 4 gigaflops speed in a normal CPU, we also do

not get slow speed as 10 megaflops we geta speed in between them, you get a frequency

in between 4 gigaflops to 10 megaflops. How is this is done? This is done by using

something called cache to improve the performance cache is used.

Caches are low latency high bandwidth memory units; these caches are placed in

between processors and RAMs. So, with some of the intuitions by the compiler and the

programmer and hardware itself, some memory from the RAM is already brought by the

cache and sits very close to the CPU.

So, if CPU ask for some data it does not need to go to the dram for that data it can take

this data from the cache. Caches are low latency high bandwidth small memory units not

the entire matrix will fit in the cache some part some rows or some elements in the row

of the matrix will fit in the cache and when the CPU wants a memory, it does not need to

every time go to dram, but it can take the memory from the cache.

And they have low latency, they have high bandwidth therefore, they improve the

performance of the system improve bandwidth and low latency in cache augments of

performance. And caches are extremely important in order to estimate the performance

of a computer.

(Refer Slide Time: 21:26)

So, if we look into a sequential computer architecture, it’s not a processor memory

arrangement rather it’s a processor cache memory arrangement. So, there is a CPU

controller register, this register has a very small memory .Any variable coming from

caches or dram is directly loaded to register and CPU can only work on the registered

variables. The size of the memory is 1 kilobyte which is very small and latency is very

small also it is 300 picoseconds.

Now, you have different layers of the cache, the first test cache is L1 cache which is

small 64 kilobyte has a latency of 1 nanoseconds and then L 2 cache L 3 cache and then

the main memory which is gigabyte in today’s world we get terabytes of memory, but

the latency is high 100 nanoseconds. When any data is used the subsequent items are

pulled into cache and cache has latency typically of the order of the processor cycle time.

So, if we need to use any data for computing, first the data is coming from the RAM and

the subsequent items if we are using an array the subsequent items in that address space

are pulled into the cache. And therefore, when the CPU is working usually it works in a

loop or following some algorithm, compiler also understands that what are the next

elements that will be used for the calculation and it brings down this element to the

cache.

So, if the CPU is working it does not need to wait for 100 nanoseconds to get the data

from the dram rather only in one nanosecond latency, it can get up the get data from

cache and thereby it can improve the performance. There can be multiple levels of cache,

the amount of data pulled in cache for one-dram access is known as cache hit ratio.

So,if one access to RAM is required by the CPU, how much data is already in the cache

is called the cache hit ratio. So, for one particular data requirement from the CPU, how

many times for one certain amount of data required by the CPU, how many of this data is

residing in the cache determines the cache hit ratio?

If the cache hit ratio is high; that means, most of the data are already in cache which is

deserved by the CPU the performance will be good. If the cache hit ratio is poor the

performance will be bad high cache hit ratio gives better performance, I can give you one

small example, if you look into Fortran and c programs. So, once any matrix is stored in

c it stores a matrix row wise again once a matrix is stored in a Fortran program the

matrix in the RAM is stored a column wise. So, if you are trying to access the matrix row

wise.

If you are using c program row wise the data is pulled into the cache. So, next elements

in the in the same row in the next elements in the same you are already residing in the

cache. So, in C program if you are trying to access the data row wise is a very good

cache hit ratio, but if you are trying to access the data across row wise in a Fortran

program, the data is in the RAM the data is actually column wise therefore, cache as the

next elements in the column not in the row there will be cache miss.

It looks for the data it will not find the data in the cache it will has to go to RAM.

Therefore, cache hit ratio will be small and the program performance will be is poorer.

So, in Fortran if you are trying to access some data if you are using a column wise data

access through your program, you will get better cache hit ratio and the performance will

be good.

(Refer Slide Time: 25:39)

Now, we come to multiple computer system. So, how multiple processors can be

connected and there are two typical arrangements one is called a shared medium that

there is a single bus in which many processors are connected.

There is a single bus ,it is connected to the main memory and other parts in the

motherboard and many processors are connected there. And the other one is that

different processors are there and they are connected via an interconnect switch. So, first

one is called a shared medium, the second one is called the switch interconnection

medium. Interconnection network allows point to point communication across the

processors.

So, if we see here this processor can address some data, this processor can address some

part of the data, but they cannot privately communicate across themselves. So, they have

to be any way connected to the shared common address space, but if we see here the

processors can point to point communicating in private communicate. If this processor

communicates with this processor, the other two processors can do that without changing

anything common between them let say it is a more flexible way of communicating

across the processors.

Also we can put many processors together if you using switch in an inter shared medium

we can understand there is a common bus in which many CPUs are connected and there

is a space issue there are heating heat generation issues there are electricity supply issue

etcetera you cannot in really use large number of processors in a shared medium. And

while saying large number of processor so, we think about really very very large number

of processor. So, in a very efficient and leading HPC system, I have shown you in for in

our first class discussion that there can be 100 or1000 computers which are connected

together.

Interconnection networks allows point to point communication, the advantage is that

multiple messages can be shared across different parts of the processor and the system

can be scaled to a large number of processors as I said earlier. The disadvantage is that

there will be more latency because the communication earlier was to a common shared

medium, but now the communication is to a switch.

And this as we are discussing about the communication across CPU and RAM there is

the latency now, there is a network switch which has more latency there will be more

wait time for the CPUs to get the data. So, communication time will increase and

communication overhead will increase.

 This interconnector may be used in shared memory machines also, but distributed

memory machines always come up with the interconnectors.

(Refer Slide Time: 28:40)

So, you should also look into shared memory or shared address space machines, that

there is one interconnect network which is connected with many CPUs and this can be

through an interconnect meter, this can be through a shared address connected also and

memories are connected with the interconnect network.

So, these memories though they are different pieces they can be assumed to a to virtually

a contiguous piece of memory and the same memory is uniformly be accessible by all the

processors which are connected to interconnect network. This is called a Uniform

Memory Access or UMA machine and if the processors have cache this is called a

cached uniform memory access. There is a difficulty if their processor sub cache this

processor fits some data here the data is already residing in the cache and works on that.

However, some same data is already residing in the cache of the next processor it has

updated it. So, this has a non-updated value of the cached data and there is a conflict

between them we will we will look into these conflicts in detail later. Same memory can

be updated by multiple processors caches which is a significant issue here this will

degrade the performance and in order to avoid that we need to use some cache coherent

protocol.

They can be false sharing though the that particular memory is not being used by the

other processor; however, they are using the same cache line and they are thinking that it

is probably the same memory they are going to going to use and there will be contention

in between them which is called false sharing.

We will again discuss false sharing in much detail and to avoid that we need cache

coherent system that once memory is updated, cache is also updated. So, one processor

updates something in the memo cache, it goes to the main memory and it is

communicated to all other processors till then none of the processors can do anything

else or snoopy cache that the relevant locations of the cache which is being updated at

utilize. So, these protocols are required for cached shared memory system and in general

shared memory systems in today’s world is cached through a shared memory system.

So, cache coherency is an important aspect in shared memory systems. The access

pattern is typically called Uniform Memory Access UMA there can be non-uniform

memory access also.Uniform memory access means same memory is visible uniformly

by all the processors.

(Refer Slide Time: 31:15)

So, we look into Distributed memory platforms or message passing based platforms

.There is an interconnect network and many processors with their own caches and own

memories are connected to the same interconnection networks.

And these processors can communicate across themselves independently through the

interconnection network. It’s not a same memory which is visible to all the computers

each processor has its own local distributed sense of memory therefore, it’s also different

memory elements and different caches given to all the processors.

We do not need to think about cache coherence false sharing etcetera instead of using

same address space each computer has its own address space virtually it can share some

of its data to other computer independently through interconnect networks. So, if some of

the element data of this processor has to be given to the third processor, this should go

through the interconnect network independently and it is not interfering any memory of

any other processor, but though it actually happens through the interconnection switches

and this is most popular and most widely used protocol for this is given through MPI

your message passing interface calls, this is done through message passing interface.

So, no situation like false sharing or cache coherence are there, but as all the processors

have different memory and substantial amount of data from one processor to another

processor has to be moved through the interconnection network, there can be large

communication over it. In our next discussion we will look these things into detail and

we will try to understand what is communication overhead and what are the challenges

its posing to a parallel computer the parallel computing application.

Thanks.

