
High Performance Computing for Scientists and Engineers

Prof. Somnath Roy

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Module – 02

OpenMP Programming

Lecture – 16

Essentials of OpenMP Programming (continued)

(Refer Slide Time: 00:40)

Welcome to the class of High-Performance Computing for Scientists and Engineers. We are in

the 2nd module, which is OpenMP Programming and we are discussing Essentials of OpenMP

Programs. This is the second discussion on essentials of OpenMP programming.

In the previous lecture, we covered the concepts on OpenMP environment routines and the

directives and constructs of OpenMP, and we have specially focused on parallel directives in

OpenMP and inside the parallel construct we can use other constructs like omp for etcetera.

We have also discussed different types of variables in OpenMP shared and private data; how

data handling is taken care of in OpenMP.

So, we look into the remaining important aspects which are work sharing, reduction clause,

scheduling, and nested parallelism in OpenMP. The idea is that once we are aware of this

particular semantics and syntaxes of OpenMP program, and also the functionality of different

OpenMP constructs and clauses will be able to develop our own OpenMP program. Some of

them will see in the subsequent classes well.

(Refer Slide Time: 01:52)

So, we are actually discussing work sharing directives in OpenMP. We have earlier seen that

whenever, we need to do something in parallel in OpenMP, the first important directive is

#pragma omp parallel or in Fortran !$ omp parallel. That specifies that the construct which has

been launched in the OpenMP program, this construct will work in a parallel mode; that means,

multiple threads will be active and these threads will take care of the remaining part of the

calculations; some of these threads will work in parallel depending on the number of

processors.

What will these threads do when they are launched in parallel? There can be certain cases

because OpenMP is specifically designed for some class of computation, which we generally

call scientific computation; which we are discussing here. So, it is a priori known to the

developers that these are the type of programs or these are the type of algorithms that OpenMP

is trying to parallelize.

 What is the region of the program which requires parallelism? one part may be that there is an

iteration, there are a number of iterations; there is a do loop or a for loop which will take care

of the number of iterations. These iterations are mutually independent; that means, for i = 1 the

calculation is independent for i = 10 in the same loop.

So, this do loop can be parallelized. The other issue can be that there are different tasks and

this task can work concurrently, these are not most likely part of what I will say part of a same

iteration loop. But there can be say for example, we are looking into solving some equations,

equations of motion; and equation of motion in x direction and equation of motion in y direction

and in z direction are independent of each other. So, if you know the force and mass the

acceleration, it can be independently calculated in each direction

So, in order to calculate acceleration in each direction independent threads can be launched.

So, the second part of parallelism can be that there are independent works, but at one instance,

you want to know that acceleration in all 3 directions, at a next instance again you need to know

acceleration in all 3 directions.

So, there can be independent works which are large pieces of works, but they will be probably

repeatedly solved and the solution of each unit of this independent work will take a certain

amount of time. So, you can launch one thread for x axis calculation, one thread of y and

another thread of z. So, this type of work distribution that if we can identify, that these are the

sections of work which can be executed concurrently and launch different threads for them.

So, within the parallel region we will say that now, multiple threads will be there. So, each of

the threads can look into different sections, and this is the next way of OpenMP parallelization

that is launching sections and distributing independent works.

Again, we are discussing solving momentum equation in x y and z direction and in certain

cases, we see that there is no force therefore, no acceleration in y and z direction we only need

to calculate about x direction. So, we will not launch any thread in y and z direction. We will

ask only one thread though everything is in the parallel region, but we will ask only one thread

to do that particular calculation. So, it’s also possible that only one thread will execute that part

of the code block the other threads will not do that.

When we see this work sharing directives, we will appreciate the fact that when somebody is

developing a parallel program, he is not developing, he is not writing different lines of the

program for different threads?

It's developed in us with a sense of generality, that one particular line within a parallel region

will be executed by all the threads and these threads, they are operating something like a single

instruction multiple data model. So, each of these threads will execute the same instruction, but

they will pick up the relevant data for their work. They will get connected to the relevant data

but, they will essentially execute a similar type of instruction for them; in case they have to do

different instruction, which is multiple instruction multiple data it can be also via section

model. That different thread will do different work and pick up data differently.

However, when the program is written the programmer does not really try to write instances of

the program specific to a thread. So, what its role is is to rather write it in a general format, and

when these different threads are launched, each thread using the algorithm will pick up its

relevant work and execute that. Therefore, if there is some work which is specifically to be

done by one particular thread, we have to specify that other threads will go in inert mode and

only one thread will do that. So, this is also one part of work sharing. There are other parts of

work sharing like pragma omp master, when only the master thread or thread id 0 will execute

that block of code. So, you are controlling mode and this particular thread will work here by

pragma omp master.

There is another interesting work sharing directive, which will see later in detail; pragma omp

critical. It shows that though the works are independent and mutual threads are concurrently

active, but at one particular region of the work each of the thread will follow some sequentiality.

So, one by one threads will do that not all the threads will attempt to execute that particular

instance of the program at same point of time concurrently, this is particularly done when you

have a single shared memory variable and multiple threads will try to update that variable. If

you put an omp critical; that means, one by one the threads can update the variable, so that

there is no contention, less condition, no overwriting of the shared memory etcetera. This is

also one important work sharing directive.

(Refer Slide Time: 09:19)

So, one of the works sharing directive is a loop construct; that means, there is a do loop, and

you have parallelized this do loop using # pragma omp for or !$ omp do in Fortran.

So, what is done here? So, if you see this particular Fortran code, we have a loop do i = 1 to 8

id inside the parallel region of the program. This parallel private is the parallel directive, and

we call the entire part, it starts at omp parallel private in Fortran, it is easy to identify the end

of the parallel construct by omp in parallel.

This entire part is called the construct, the centre part is the parallel construct, that means, at

this region multiple threads are launched and they are active concurrently. This entire part from

omp parallel omp end parallel, is the parallel construct.

So, this is the construct we have seen earlier and this part is called the construct, and this

particular line omp parallel is called the directive. Now, inside the construct, 4 threads are

launched; first it finds out the id of the thread each. Then, there is a do loop do i = 1 to 8 ia is

some variable which is id + i, and each of the thread will take care of some parts of this i loop

because, we have launched omp do; omp do, and this is another construct which starts at omp

do and ends at omp end do.

Within these 4 threads which are launched, will take care of these 8 iterations in the do loops.

what will they do? They will update a variable ia ; a thread private variable.

So, for each variable ia is each thread ia is somewhere private. ia = id + i, i is the iteration

number and id is the thread number. So, for i = 1, we can see because we there are 8 iterations

which is distributed into 4 threads, each of these threads are picking up 2 of the iterations,

thread 0 has picked up 1 ,2 ,thread 1 has picked up 3 and 4, thread 2 has picked up 5 and 6

,thread 3 has picked up 7 and 8.

They have written that ia which initially started from ia = 0 Fortran initializes it automatically

to be 0, i = id + i. So, for thread 0, id is 0 therefore, ia will be 0 + i the values of i, for thread 3

id is 3, but i was that goes here 7 and 8 last 2 iterations, and they will pick up 10 and 11.

So, we can see that there are some iterations and this number instead of 8 can be anything else

also the thread number could have been anything else. OpenMP compiler itself distributes

different iterations to the number of threads; here we can see there is an even distribution; that

means, there is a load balanced distribution. But there are cases when the number i the number

of iterations is not exactly divisible by the number of threads. However, it ensures some sort

of load balancing.

Also, the programmer has some control over the distribution of threads, distribution of

iterations over the threads through schedule clauses, we will look into schedule clauses later.

But right now, we can see, there is a for loop or, there is a do loop in Fortran, and if we can just

define do open omp do construct then, this is automatically parallelized and distributed among

states well. So, this is what is called a loop construct? And this same thing will happen Fortran.

(Refer Slide Time: 14:53)

Iterations are mapped to the threads in the identical manner for all do loops, if the number of

iterations is the same. We see that there is also another do loop, do i = one to eight same number

of iterations, iterates updated ia = i + id. What is the value of ia, that is again added with ia. We

can see here iteration 1 and 2 were going to id 0. Here also this is again the same way

parallelized, so this loop ends another loop starts here. This is also iteration 1 and 2 goes to id

0, iteration 7 and 8 going to id 3 thread 3 iteration 7 and 8 here also goes to thread 3.

So, the mapping of the iterations to the threads are identical for all do loops, if the iteration

numbers are the same. If the iteration number changes it happens differently, but this gives a

very good control for the programmer over the work distribution in OpenMP because; if he is

trying to solve something over a large number of iterations and the iterations happen over and

over, he knows that these iterations are specifically assigned to this particular thread.

Another point is that we have said that the variable ia is a thread private variable. So, the copy

of ia remains in each thread at different do loops. From the first thread, id = 0 has the values of

i 1 and 2 and the last updated value of ia is 2.

So, this value 2 stays with the thread 0, because, it’s a thread private variable, and it starts ia =

i a + id when it writes updated ia; that means, this value 2 stays here the value 2 comes here, 2

+ 0 = 2.

For thread 3 ia was 10 and 11. So, the last updated value was 11, these 11 values stay with

thread 3. Now, at the next loop 3 thread does ia = ia + id. So, it is ia + id =11 + 3 and again it

adds another 3, because id is 3 here, 11 + 3 =14, 14 + 3 =17 so this stays here. Because there

are thread private variables these values stay with the thread.

So, these are certain features of do looping and thread private variables. The main point is that

if there is any do loop in Fortran or for loop in C, if you use parallel for C or if you use omp do

or parallel do for Fortran, it will be automatically parallelized and some of the iterations in the

loop will be mapped to some of these threads. This will be identical, if the number of iterations

remain the same for the same number of threads, this is the same for C also.

We also can see, if we write anything after the end of the construct, this will be operated

sequentially; that means, this thread ends here, everything executed by all the threads finishes

and the next instances of the program are launched. Therefore, this is called an implicit barrier;

that means, all threads finish their work. In case some thread has not finished the work, the

other threads will wait for it.

(Refer Slide Time: 19:18)

We can see that when the new loop is launched the number of iterations specific to that is the

same to that particular thread, and the last updated value of ia, which is ia = 11, goes to this

thing, this is 11 + 3 = 14 and then 14 + 3 = 17. The value of the variable comes here, as it’s a

thread private variable well.

Also, we can see that this is same in C also; in C that the loop construct is # pragma omp for

you can parallelize, the particular for loop using # pragma omp for. But it is important that this

parallel do loops must be part of a parallel construct. They should follow a directive parallel

omp parallel or # pragma omp parallel, directive and inside that it should be inside the code

block associated to the directive or inside that construct.

(Refer Slide Time: 20:31)

The clauses supported by the loop constructor private, first private, we have discussed about

the clauses, reduction; we can do reduction using the loops also; order, schedule. So, if we see

orders if we go back to the previous slide, we can see that these outputs are not in order 0 8

thread iteration 1 and 2 is written first, then 7 8 then 3 4, then 5 6. Here 1 2 again 3 7 8 3 4 5 6

is not written 1 2 3 4 5 6 7 8, it's randomly written by the threads.

Now, if we put the order clause here, they will be written in an order. How can they be written

in order? If there are multiple processors and each of the processors is executing one of the

threads. This processor can work with their own latency and they can write in any order. So,

you need a synchronization in between them; that means, first the thread 0, will write then

thread 1 will write so on.

This synchronization requires some sequentiality of execution and that will also add to the

overhead. So, when we put this order, there is certain overhead, and another point we have seen

there is an implicit barrier after the threads; that means, there is already some synchronization

that unless all threads finish their work, the threads who have finished their work have to wait.

In case we do not want that synchronization because, synchronization means wait time for

certain threads, it means latency, it means overhead, we can use the clause no wait that the

threads will not wait for other threads to finish the work and start working on there.

For in this particular case because, they are operating on a thread private variable this could

easily have been done, we could have put nowait, and if you execute the program you will see

that the program speed is faster because threads are not waiting. They are finishing their job,

and going to the next step when done, no wait.

(Refer Slide Time: 22:41)

The other important construct is section construct when there is not a do loop, but there are

multiple sections of the job which are independent tasks. And they can be assigned to different

processors or different threads.

So, section construct divides the jobs into multiple section and asks different processors to

work in different section and therefore, the different subroutines are functions that can be called

in parallel different parts of the program, which has no dependency among them can be

executed in parallel.

So, it is like # pragma omp sections is again a C construct, then you put # pragma section and

put a section there. # pragma omp section and put another part of the job there. So, these two

parts will be concurrently or parallelly executed.

So, if you write pragma omp sections and then pragma omp section one-part pragma omp

section another structured block, these two blocks of the code will be executed in parallel.

Again, this entire construct which is inside pragma omp sections must be part of a construct

pragma omp parallel. Because, unless you would say that this is already a parallel region using

pragma omp parallel, multiple threads are not launched.

Once multiple threads are launched through pragma omp sections, you can ask if different

sections will be executed by different threads in parallel. So, this is a way in which you can

call different functions also, different subroutines can be called which can operate in the act

independently and they can be called in parallel.

So, pragma omp parallel launches the parallel section, launches the parallel construct inside the

parallel construct, you have to use pragma omp sections. That means, multiple threads will be

taking care of different parts of the code block, and each pragma omp section, each of the

subroutine or the code block you can also write some part of the code, will be executed by

different threads.

This is very important construct in a case; you are not working on a do loop or you are not

working on a strict SIMD architecture, where same instruction is being operated over different

parts of the data, but, you want to do a MIMD type of architecture, there will be different data

and different instructions will be processed ,in parallel the omp section is a very useful

construct.

Again, here you also need not worry about how the threads will be mapped? Which thread will

pick up which part of the sections etcetera? omp will automatically pick up one section and

assign a thread for that, pick up another section and assign another thread for that. So, this

optimization is as well as the load balancing is automatically done.

(Refer Slide Time: 26:01)

The clauses are private, first private, last private, thread private as we can see is not supported

here, because, this is not do loop these are different data which each processor is working on,

and these are different instructions also. So, if we call through sections next time there is

probably nothing, which is specific to a thread as a private variable and go with that thread

again.

(Refer Slide Time: 26:33)

Now, we have seen that section and for they are called inside a parallel block, they have no

utility outside the parallel construct, because, these constructs are by definition part of parallel

constructs. Only when parallel construct is launched, multiple threads are launched, you can

do a # pragma omp for or you can write # pragma omp sections. You can execute the threads

for parallelization of a for loop or for a sections block, only when its already these threads are

available. Already it is a part of parallel constant. So, combined work sharing constructs are

there which says that for is always parallel for, there is no non parallel for.

So, in certain case if there is only one for loop inside one particular parallel construct, you use

pragma omp parallel for. Or if there is only one sections loop inside one parallel section you

use # pragma omp parallel sections. But, if there are multiple parallel regions inside one parallel

construct you cannot use that, but in other cases there, they make the programming simple.

(Refer Slide Time: 27:52)

Another very important clause is the reduction clause. Reduction is an optimized construct for

doing parallelized repeating operation on a shared variable. It is often required we will see an

example later that, one particular shared variable is there ,multiple threads are trying to get do

summation of some data, and everybody is getting its local sum and finally, this local sums up

to assemble and a global sum has to be obtained; or you need to find out maximum of large

number of integers, and many threads are given and they are looking into certain part of the do

loop some of the numbers, they are taking and trying to find out what is the local maxima.

Finally, you need to get a global maximum. So, there are many cases when you need to find

the global value, but you are trying to do it over many small local values. And reduction is the

clause when this operation that you have a shared memory variable, you are trying to find out

maxima or addition or something on that shared memory variable and doing.

Basically, same operations by all the threads on that data, on the shared variable and the

optimized way to do it because, it’s a shared memory access variable which is being accessed

by multiple threads, there can be contention, there can be rest conditions, there can be false

sharing. So, to establish cache coherency, there will be certain latency in the threads also, to do

it in an optimized way reduction clause is important. It’s a very important clause. We will see

some of the examples later.

OpenMP provides a reduction clause for specifying calculations involving mathematically

associative and commutative operators, so that they can be performed in parallel without code

modification. So, we will see some of the examples later. The programmer must identify the

operations, and the variables that will hold the result variables, and the rest will be done by the

compiler. Say you need to find out the sum, the programmer has to find out that the operation

is sum and the summed variable is say total, the where is the sum after the summation it will

be written in a variable name total and the operation is sum.

Specify that there is a reduction operation by all the threads, and the local totals will be added

to the final total through the sum operation. Compiler will take care of the rest; the compiler

will divide it among threads and get the local values to sum it up. The result has to be always

a shared variable. The idea of reduction is that the same shared memory variable is being

calculated by multiple processors, through the same operations that means, if I say the variable

total it is the sum of some variables, it is not the sum of some variables and multiplication of

some other variables. It is the sum of some variables and this sum summation process is over

a large number of integers, which given a distributed amount of different threads reduction is

taking care of the summation.

It is advisable to use reduction clause instead of manually doing it in the code, because, this

optimized call avoiding false sharing and race condition, and , it is a shared memory variable

and this shared memory variable is coming from, several private variables which are doing the

local sums or local maxima or local multiplication, and then finally, assembling everything

bringing them together and getting the shared variable.

So, manually it can also be done that you get all the local sums and you write that the global

sum is some of these local sums. However, if you try to do it manually because it's a shared

memory variable accessed by all the processors, it can give you some of the issues related to

the cache memory.

Therefore, it’s advisable that instead of doing it manually instead of writing a code for taking

local sums and finding global some is not specifically sum it can be a different procedure; use

a reduction operation.

The syntax is just write reduction and then the operator name, the intrinsic procedure name

(operator is summation, multiplication, type of things and the intrinsic procedure is maxima,

minima average), and then list which are the variables, what is the array that has to be taken

for the reduction operation

So, one of this pragma omp for default shared and in this for loop, sums all the variables in a

matrix. There is an array and summation all the elements of the array will give you a sum. So,

sum + = a[i] is the for loop and you write reduction. So, if we just write this each thread will

try to find its own sum, and then we have to do something because they are trying to all threads

will try to write to the same shared memory location, we have to do something to take care of

that. But, if you just say that because multiple threads are doing this sum, this is a reduction

operation with addition of the data of a[i], multiple threads are doing a[i] and the output

variable is sum, then this is already taken care of .In Fortran also shared its result all the

variables are writing result = result + a[i]. So, all the elements of the matrix a[i] are written as

summed up and result. This do loop is parallelized, but this is operating over the same variable

and doing basically addition so, reduction + result, that will take care of it.

(Refer Slide Time: 33:55)

Many of the scientific computing calculations require this type of work, that distribute data in

different chunks, ask threads to find the local minimum, maximum, sum etcetera and then find

the global value. Reduction is of great use in these computations, we can see that if we have to

find out the maximum of n numbers and each processor gets their n /n p. So, each processor

has one thread which gets n/ n p numbers and finds their local maxima. All these local maxima

are taken care of by one of the processors and it finds the global maxima of all the local maxima.

So, this operation can be easily done by a reduction operation that x is maxima of x, data[i]this

is finding out maxima in case it’s a single processor thread.

In, multi-processor execution writes that its pragma omp parallel for and this pragma omp

parallel for, has the clause that finds maxima, this is an intrinsic operation of the variable x. It

is finding the maximum of a certain variable and writing it in the location x. So, you will get

the output. This is extremely useful in many operations. We will see some examples later.

(Refer Slide Time: 35:14)

Reductions clause specifies operation and a list of variables. When reduction is done, you have

to specify which operator will be active and what are the variables on which it will work.

When you have to use a reduction operation OpenMP first compiler first creates a local copy

for each reduction variable, initialized to the operator’s identity say, it starts with sum, it starts

with 0, if it is multiplication it starts with 1. If it is finding out minima gives a large number

and then finds what is the minima?

So, this is basically how you do the sum or find minima ;in a single processor, reduction asks

all the processors to get local copy of these initialized variable, and then after work shared loop

completes all local variables have their local output, and this combines with the entry value

and goes to the shared variable, and the final result obtained by combining all the variables and

placed in the shared variable. Compiler level optimization is there which takes care of the

contention reducing and false sharing, in the next lecture we will see an example.

Before OpenMP 4.0, for certain operations only reduction was allowed. But now, user defined

functions and reduction are also supported you can say that, this type of function I want to

operate in a reduction mode, that all the threads will perform this operation and then their

results will be taken care of by master thread, and the same operation will be executed over the

results of all the threads over all the local results. You can do it in your customized way from

OpenMP 4.0.

(Refer Slide Time: 37:06)

Well another important clause is schedule clause. Schedule clause determines how iterations

will be mapped to threads. In case we have a large number of iterations, we have seen that

OpenMP does some mapping, OpenMP distributes some of the iteration to some of the threads

in a load balanced way. But, if there are a large number of threads and the OpenMP can result

in uneven distribution, you need to control it, you can use shared variables.

Pragma omp for parallel for schedule static is one way of using that and then the next is

followed by chunk size. So, once this is a static schedule there are fixed chunks of iterations

assigned to all the threads, and typically default (if you do not specify anything), the total

number of iterations divided by the total number of threads that will be the chunk sizes.

We can see some examples in case we have 64 iterations using 4 threads. We say that pragma

omp schedule static, we do not specify any chunk size ,16 will go to each of the threads. In

case we say that schedule is static if chunk size 4, so, first 4 will go to thread 0, thread 1, thread

2, thread 3, and then, there will be some cyclic distribution of the threads. It’s not first 16 will

go to thread 0 first 4 will go to thread 0, then 5 2 8 will go to thread 1 so on.

In case we use chunk size 1 it is really a cyclic distribution 1 to 16 will go to thread 0 to 15,

then 17 to 32 will go to thread again go to thread 0 to 6 15 so on. So, there is a cyclic distribution

of iterations which is sometimes important especially, if you want to avoid some less condition

and sharing of data by the threads.

(Refer Slide Time: 39:16)

There are other parts of the schedule clause pragma omp, parallel schedule dynamic which

dynamically allocates the threads. And each thread grabs some of the chunk size and depending

on, what is the workload it dynamically allocates the thread. But, as it does run time and

dynamically there are certain cases, when at every iteration you need to reallocate the number

of threads, and there is some associated overhead.

The other way is schedule guided, where initially some of the blocks are given to some of the

threads, and then it keeps on reducing the number, because you got a reduced number of threads

after, you initially assign some threads to some block, you start distributing them. The guided

and dynamic has one good advantage that they take care of the resource you were actually

using. That means, if you are using some machine where some of the nodes are occupied by

some other job, static will still give a number of iterations and assign some number of iterations

to those nodes. However, guided and dynamic can understand that there is some extra loading

on these nodes and put some of the jobs in some other nodes. There is a runtime which looks

into environment variables and runtime associates the job.

(Refer Slide Time: 40:41)

There are some examples like in case of schedule static 2, there are 12 iterations to be

distributed in 3 threads. Each thread gets a uniform amount of work and if this is static 2; that

means, 0 and 1 goes to thread 0, 2 and 3 goes to thread 1 sorry 4 and 5 goes to thread 2. Then

we can see that 6 and 7 again goes to thread 0, 8 9 again goes to thread 1, 10 11 to thread 2.

In case of cyclic distribution static 1, we can see 0 goes to 0, then 1 goes to 1, 2 goes to 2,3

again goes to 0 ,4 again goes to 1. So, there is a cyclic distribution of the threads. There is no

chunk going to any of the threads, 1 thread iteration to 1 thread, another iteration to the next

thread, the subsequent iteration to the next thread and so on.

(Refer Slide Time: 41:45)

Also, we can see a dynamic and scheduled distribution that, there is actually uneven distribution

if you use dynamic and guided comments. Guided is more uneven in dynamic it is less uneven,

they are trying to estimate; however, the loads on different processors and allocating the threads

accordingly. IN dynamic it makes chunks of 2 and distributes it to different threads. In guided

minimum 2, it's assured that minimum 2 threads will go to minimum 2 iterations will go to 1

thread. But there can be different number of iteration 3 iterations going to this thread, different

number of iterations going to thread.

They do not assure load balancing in bookkeeping sense, but they assure load balancing looking

into the hardware capacity of different systems.

(Refer Slide Time: 42:44)

So, there is another thing called nested parallelism called parallel region within a parallel

region; that means, multiple threads will be there and the threads are further launching sub

threads. This has to be done by per nested environment has to be set by omp set nested. We

can see that first there are threads launched which will launch inside a parallel construct threads

will write their own id, and then, there will be another parallel section within the parallel

construct. This is a parallel construct within the parallel construct, there is another parallel

section.

So, now each of the threads will become the master thread and launch the slave threads. So,

thread 0 and thread 1, in the next section which was the thread 1 in the first parallel construct

in the nested parallel section, it got a thread 0 number and it launched another thread.

So, if there are multiple parallel loops, we can call nested parallelism and do that. In case, we

turn up the nested parallelism, they do not launch any further threads. They simply launch 1

thread in the sub nested parallelism, multiple threads do not act there. But each thread again

becomes a master in the nested parallel part. Whether, it will be nested parallel or not that has

to be set up by the environment variable omp set nested, if its clause is non-zero it will be a

nested parallel region. Nested parallel means there are multiple threads launched and each

thread is further launching another set of threads ok.

(Refer Slide Time: 44:29)

(Refer Slide Time: 44:30)

So, these are the references and we looked into through these discussions’ directive constructs

and clauses, recursion and scheduling clauses and nested parallelism is introduced. We will see

some important applications of the OpenMP program, with a focus to critical issues in shared

data handling. How if multiple threads are trying to write to a shared data, which is often done

in a practical scientific computing problem, how that is done by OpenMP; based on the basics

we have discussed so far, we will see it in the next class.

