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Welcome. We are continuing our discussion on Fundamentals of Parallel Computing, the 

1st module of the course High Performance Computing for Scientists and Engineers. We 

are in the last lecture of this module which is our lecture 11, we are continuing the previous 

discussion which we have started on Performance Metrics of Parallel Systems. As I was 

discussing that parallel system is deployed to do high performance computing simulations. 

Why do we need high performance computing? Because simply if we solve using a simple 

computer which we have been mentioning a sequential computing, it might require 

enormous amount of time if you are trying to solve a very large problem. In order to reduce 

the time in order to get faster solution we try to do high performance computing which is 

typically using multiple computing systems using multiple CPUs in different architectures 

to solve a single problem. 

These CPUs work in parallel, they are basically trying to solve different parts of the same 

problem, but they working parallel. And we have seen that when all the CPUs are working 

in parallel, they will have some overheads due to interaction between them, due to setup 

of the parallel environment, and some other issues like improper load balancing latency of 

certain systems etcetera. 

Therefore, it is extremely important that we find out a quantitative metric to see how good 

is the parallel environment or the parallel system architecture as well as how efficient is 

our algorithm by which we are trying to solve a serial a problem not used using a sequential 

computer, but using multiple computers .It also depends on how we are designing the 

algorithm. 

We have discussed about design of parallel algorithms and how are we are utilizing 

different systems in the parallel in infrastructure. So, we have introduced about some 



concepts in on performance of parallel systems in our last discussion and I am continuing 

with this. 
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So, we have introduced performance metrics which include the parallel computation time, 

the speed up, the efficiency the cost of computation etc. And we have also discussed about 

overheads and efficiency and we have seen that if we consider a parallel system to be very 

efficient, that means, that if we are increasing the number of processors the speed up is 

increasing almost linearly. The benefit is almost linear if we are adding two more 

processors or if we really doubling the number of processors, the computational time is 

getting halved that is a parallel system with efficiency one.  

But we really cannot achieve that efficiency because there are overheads as we are 

increasing number of processors, they are interacting in between them, there are some 

other issues like load balancing, strong sequentially in some parts of the algorithm which 

does not make it fully efficient algorithm and we lose some efficiency which sees a 

reduction in speed up.  

So, we will discuss about this efficiency and overheads little more. We have already started 

the discussion in our last class on performance metrics of parallel algorithm systems. We 

will see something called an ISO efficiency function, which is a very important parameter 

in order to estimate that, what should be the optimum number of processors, in which I 

should run my parallel program to get best efficiency and get the right speed up. 



One thing we should also not forget when we are discussing about parallel systems that if 

we are having a large problem to solve and this is running over a large number of 

computers and processors, these computers do not come for free we have to spend 

substantial amount of money in establishing the set up as well as for running the setup, 

there is huge operational cost including the energy  investment. 

Also, these computers are they as they require energy, they do contribute to our energy 

scenario as well as to global warming. I mean data centers or the hubs in which we host 

the parallel computers, they are infamous for sources of global warming they are very high 

carbon footprint. So, we should be very judicious while deciding that what is the optimum 

number of processor and what is the optimum size of the computing environment in a 

computing infrastructure that we should use to solve this problem. 

We should not take it for granted that we can increase the number of processors as much 

as possible and we will get a better efficiency or we will get the job done in a faster way. 

We also should be judicious in deciding how many processors we should work with and 

,if somebody is in some place where there are a lot of computational resources he must be 

happy, but in general everybody working in high performance computing are challenged 

with the problem that the computational resources are limited you do not get large number 

of processors.  

If you were submitting you have to a very high end supercomputer, you see that your job 

will go in queue and you have to wait few days say for 5 days run time and get your get 

some part of your problem solving you may not solve the entire problem in one set of run.  

So, availability of the computational resource is also one very serious issue and therefore, 

understanding the performance metrics and understanding how to decide what should be 

the optimum number of processors to get right performance. Also understanding the fact 

that whether the program or the algorithm you have developed is the right one or whether 

we need to do something else to get better performance out of it are very important.  
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So, we look about efficiency in little more detail, we understand that efficiency is an 

important parameter while estimating performance of the parallel systems. In case a 

parallel system is completely scalable, that means, if we increase the number of processors 

by twice time required will be halved it will require half than the previous time 

requirement, we call that the system has the efficiency equal to 1, but we understand that 

efficiency cannot be 1 because there are overheads.  

As we are increasing number of processors there are more interaction between the 

processors in case of a distributed memory system, in case of shared memory system there 

are more risk conditions, there are more false sharing and cache coherency protocols are 

much required and therefore, there will be certain overhead .There will be also be some 

overhead due to improper load balancing and efficiency will fall down. 

So, if we are increasing number of processors, we will not see that the speed is increasing 

by the same factor. We can see efficiency is a function of both problem size as well as 

number of processors and we will see how.  

That means, if we have a large problem whatever is the efficiency if we increase the 

problem to a larger extent efficiency will probably increase. If we keep the number of 

processor fixed, and if we increase the number of processors for one particular problem, 

we will see the efficiency will fall down and let us see it in detail.  



So, efficiency we have seen can be expressed as speed up divided by number of processors. 

What is speed up? Speed up is the ratio of the computational time required by sequential 

processor or sequential program divided by the computational time required by the parallel 

program.  

And this is also inverse of the ratio of speed of these two programs ratio; that means, speed 

up is ratio of the speed of parallel program divided by the and the ratio of the ratio of the 

speed of the parallel program and speed of the sequential program.  

𝐸 =
𝑆

𝑝
=

𝑇𝑠

𝑝𝑇𝑝
 

Now, if you understand what is 𝑝𝑇𝑝? 𝑝𝑇𝑝 is the cost of parallel computation and 

therefore, 𝑝𝑇𝑝 is the sum of the sequential computing time and the computational over 

head? So, we write  

𝐸 =
𝑆

𝑝
=

𝑇𝑠

𝑝𝑇𝑝
 =

𝑇𝑠

𝑇𝑜+𝑇𝑠
=

1

1+
𝑇𝑜

𝑇𝑠

 ,where To: overhead 

This 
𝑇𝑜

𝑇𝑠
 is the ratio of over head divided by sequential computing time therefore, we can 

see efficiency is a ratio is a function of the ratio of overhead and sequential computing 

time.  

What is overhead over head? Why does overhead occur? Overhead occurs mainly due to 

interaction between the processors or data transfer and load balancing. So, as we increase 

number of processors overhead will increase because more processors are there, more data 

transfer time will be required and more processors are there. So, load balancing effort and 

latency due to improper load balancing will increase. 

So, this becomes a function of the number of processors and Ts is the computing time for 

a sequential program and Ts is simply determined by how large is our problem. So, you 

can see efficiency is a function of the ratio of overhead and sequential computing time or 

is a function of the problem size and number of processors.  

And we can see that efficiency is the function of ratio of over head and sequential 

computing time and therefore, it is a ratio of it is a function of problem size and number 

of processors we can understand from here that overhead is related with the number of 



processors, as we are increasing number of processors overhead will increase sequential 

time is related with the size of the problem. As the large as the problem is larger the time 

to compute the solution in a single processor is also more.  

So, speed up =number of processors X efficiency simply we can write. 

𝑆 = 𝑝𝐸 =
𝑝

1 +
𝑇𝑜
𝑇𝑠

=
1

1
𝑝 +

𝑇𝑜
𝑝𝑇𝑠

 

 

 And now we can see that in case the overhead is very small say in case 𝑇𝑜 is a small 

number in case it goes to 0. Speed up becomes 1 by 1 divided by 1 by p or speed up is 

equal to p in that case speed up is equal to p.  

That means, we are increasing the number of processors and we are getting the ratio of the 

computing time for that parallel problem and the sequential computing time which is equal 

to the number of processors. So, if you are using five processors the computing time is one 

fifth of the sequential time and which is an ideal system which is an efficiency one system.  

But it never happens because S never equal to p because 𝑇𝑜 is never is equal to 0. So, there 

is a significant amount of over head and it leads to reduction in speed up. 
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So, we consider an example to look to look these things into detail, we consider addition 

of n numbers by p processors and n is divisible by p. So, each processor adds n/ p numbers 

and then communicate its sum over this p processor network and after this communication 

one computer picks on processor picks up these values and it adds which are local additions 

which are coming from all different processors. 

So, computing time in a parallel computing setup will be computing time for n / p numbers. 

So, what is adding n/ p numbers? The computing time will be of the order of n/ p, n/ p 

floating point operations will be there and communication time over p processors because 

each processor has its local sum which is communicated and p processors are doing these 

things.  

This communication time sending data by a processor and receiving by another processor 

over a p processor network it can be shown that this is of the order of 2log p. Therefore, 

the total time requirement becomes of order of (n/p+ 2 log p) in case of parallel computing 

of summation of n numbers in a p processor network. Now if we try to do it in a single 

processor sequential system there are n numbers, they will be added there will be n floating 

point operation therefore, computing time will be of the order of n.  

So, what will happen to the efficiency? That is 𝐸 =
𝑆

𝑝
=

𝑇𝑠

𝑝𝑇𝑝
  and we can see efficiency is 

1

1+
2𝑝𝑙𝑜𝑔𝑝

𝑛

.  And speed up will be efficiency multiplied by p which is 
𝑝

1+
2𝑝𝑙𝑜𝑔𝑝

𝑛

. This is we 

have not considered load balancing overhead we are only considering the communication 

overhead because this is a completely load balanced problem.  

So, this 2𝑝𝑙𝑜𝑔𝑝 term is the overhead term here. In case this overhead becomes 0 speed up 

is equal to p a perfectly scaled up system efficiency is equal to 1. When this overhead can 

be 0? This overhead can be 0 if p is equal to 0 it can tend to 0, but there is no meaning of 

that problem.  

But the overhead also can be small in case n is large. So, if p is equal to 1 over head will 

be 0, but that is a sequential problem it does not have any over head. But if n is large if 

you are solving for large number of numbers to be added, the problem size is a itself large, 

then this number will be a small number and s will tend to p.  



So, if we are solving in single processor overhead is 0? But there is no point in this of 

discussing single processor parallel system. If you are solving for a large problem in small 

number of processors then this will be 0 the over head will tend to 0. So, we have taken 

here from Grammas book how overhead varies with number of processors.  

And we can see that as for one particular problem as we increase p, p log p increases 

rapidly and over head becomes constant and if over head is large therefore, speed up 

becomes almost constant even if we are increasing more number of processors you can see 

here even if here increasing more number of processors for a small problem we are not 

seeing any change in speed up.  

For high for a larger problem there is some change in speed up; however, speed up does 

not increase much if we are increasing the number of processors. Initially it increases, but 

then it becomes almost flat.  

But if we keep on increasing the problem size keeping the same number of processors, say 

for processor number 16 if we keep on increasing the problem size, we can see this speed 

up is increasing because as n is increasing over head is reducing or the effect or the effect 

of overhead in term efficiency is increasing. The effect of overhead in scalable scalability 

or speed up of the system or calculation of efficiency of the system is reducing as the 

problem size is increasing. Overhead is plog p which is fixed which is only increasing with 

number of processors.  

But as the problem size is increasing its effect in calculating efficiency and speed up is 

reducing because n is increasing. So, with increase in n we get better speed up. The same 

thing happens for efficiency therefore, we can say that speed up is near linear as the 

problem size increases.  

If we have if we take a much larger problem, if we take n is equal to say 10,000 or even 

more than that n is close to a million, then we will see that this curve has become much 

flatter. So, speed up in is becomes more linear or follows 45-degree slope as the problem 

size increases. Efficiency increases if problem size increases. We can find also here as 

speed up increases’ efficiency approach the highest efficiency point which is one.  

But efficiency reduces, if number of processor increases. Speed up becomes flat the slope 

of speed up reduces, efficiency speed up divided by p therefore, as number of processors 



increases speed up becomes flatter and s/ p will be a smaller number. So, efficiency reduces 

as number of processors increases.  

So, we can summarize these that efficiency is a function of problem size and number of 

processors. As the problem size increases efficiency is more as the number of processors 

increases efficiency is small.  

(Refer Slide Time: 19:59) 

 

We look into a little more detail that for a given problem size if we increase the number of 

processing elements the overall efficiency of the parallel system goes down. Given a 

problem as we keep on increasing the number of processors, we can get better speed up, 

but the speed up curve will be flattened the speed up will not increase as much as the 

number of processors are being increased.  

This observation holds for all parallel system. Even if speed up is increasing the rate of 

increase of speed up or speed up divided by number of processors s by p that is not 

increasing, that is falling down. If therefore, efficiency is reducing as you are increasing 

number of processors for a given problem size and single processor problem is the best 

efficient problem, it always has efficiency is equal to 1.  

But as we again if we go to two processors, the computational time is less speed up is if 

speed up is more than 1. However, speed up by efficient number of processors when 

efficiency is reducing. Because speed up is not exactly following 45-degree line had speed 



up followed 45-degree line efficiency would have been constant or 1, but it is not following 

a 45-degree line.  

Again, due to the fact that there are overheads and the overheads are increasing as we are 

increasing number of processors. So, we can see that speed up, though it increases it 

becomes flattened down and there can be cases where speed up is reducing actually you 

have seen in the last problem for a very small problem size, if you are using large number 

of processors, speed up is reducing. Efficiency is also reducing almost asymptotically.  

So, we can see that as number of processors are increasing these terms ,2 log p here and 

2p log p here, these terms increase, keeping the problem size fixed these and therefore, 

efficiency falls downs, not necessarily it will fall down, but it slows down.  

In many cases efficiency increases if the problem size increases while keeping the number 

of processors fixed. If the number of processors is fixed, but we are increasing the problem 

size, efficiency is probably increasing and why is it increasing? Because the ratio of the 

overhead divided by the number of processors which comes in the efficiency calculation 

that is reducing.  

As we are increasing the ratio of the overhead divided by the number of problem size that 

is reducing. As we are increasing the problem size this ratio is coming down and therefore, 

efficiency is increasing. So, there can be cases where converse is true, but for first part that 

if you increase number of processors efficiency will reduce this is universally true.  

But if you increase number of process if you increase the problem size in general or for 

most of the cases, the efficiency will increase. There can be some contrary examples, but 

in most of the cases it holds, that if you increase the problem size keeping the number of 

processor fixed efficiency increases.  

So, we can understand that for a larger problem with the same number of processors 

efficiency will be more. For the same problem with increased number of processors 

efficiency will be less. Now, if we have to solve a larger problem should we increase more 

processors or not in order to get same efficiency? And that becomes a very important 

question here. To address that question, we also need to know about iso efficiency 

function.  
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Speed up or efficiency is a function of both number of processors and problem size. So, if 

we have a larger problem should we use a greater number of processors? That is the 

question. As the problem size increases efficiency is increases, as the number of processors 

increases efficiency is reduced.  

So, how beneficial is to increase the number of processors to solve a larger problem? If we 

have a larger problem if we are using same number of processors, we are getting better 

efficiency. In case you want to have same efficiency, better efficiency means the speed up 

increases. If we have to use same s/ 2 ratio will increase a greater number of processors 

and we will get better speed up in the similar ratio.  

Should we use a greater number of processors if we have a larger problem? For the same 

problem if we use a greater number of processors efficiency will fall down speed up will 

be flattened. We are always using high performance computing architecture to solve large 

problems  

From one problem we go to a larger problem will it be judicious decision to increase a 

greater number of processors that becomes the question and what is our optimal function 

here? That we want to keep the efficiency fixed we do not want to reduce in terms of 

efficiency, because we discussed about costs, overheads etcetera. We see that it is 

important to maintain the efficiency of the computation.  



Can we get better speed up while increasing the number of processors for a heavier 

problem or near constant efficiency, can you get that? And what is the parameter by which 

we can decide this? So, you know efficiency is  
1

1+
𝑇𝑜

𝑇𝑠

 where 𝑇𝑜 is the overhead time and  

𝑇𝑠 is the sequential time that if we solve it in single processor 𝑇𝑠 will be the time.  

So, it will be important to see how overhead 𝑇𝑜 changes while increasing the number of 

processors and the problem size. 
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Overhead is a function of both problem size and number of processors, let us assume a 

sequential job which is running in a single processor, and the single processor computing 

time is W, that is being executed in parallel this job will be executed in parallel by p 

processors. And the overhead is a function of the main problem size W and the number of 

processors. So, over head is 𝑇𝑜(W, p). So, efficiency is 𝐸 =
𝑆

𝑝
=

𝑊

𝑝𝑇𝑝
 =

𝑊

𝑊+𝑇𝑜(𝑊,𝑝)
, 𝑝𝑇𝑝 is 

the cost which is sequential computing time plus over head.  

So, efficiency is 
1

1+
𝑇𝑜(𝑊,𝑝)

𝑊

. Therefore, the sequential computing time W can be written as 

𝐸

1−𝐸
𝑇𝑜(𝑊, 𝑝). So, over head can actually be expressed as a combination of an implicit 

function with efficiency and the main problem size.  



If we have to maintain a constant efficiency this
𝐸

1−𝐸
term, if E is constant this becomes 

constant (k say), therefore, W is equal k To(W, p). To is the overhead which is the function 

of W or the main computing time of the sequential job and p or number of processors. W 

is a sequential computing time which is constant and k is also constant.  

Therefore, for a system where
𝐸

1−𝐸
is constant ,To(W, p) must be a constant and what is To 

(W, p)? What is the function which relates overhead with number of processors and the 

problem size? This function is known as isoefficiency function. In  this case if we can keep 

k is equal to constant ,efficiency is equal to constant by increasing number of processors, 

then To(W,p)is called as an isoefficiency function. It determines how the problem size 

should increase with increase in processors so, that efficiency or k remains constant .In 

case I am changing p how W will change, so, that this function k will remain constant.  

And it is also seen that for constant efficiency systems or scalable systems it has near 

constant efficiency systems, this value is small or over head is small. So, if we have small 

over head it is following near 45-degree slope in terms of speed up and efficiency is nearly 

constant. This function which relates over head with the problem size and the number of 

processors is known as isoefficiency value.  

Well so, we can do a numerical experiment or we can do some analysis on the algorithm 

and find out how overhead is related with number of processors and the size of the problem 

and find out the isoefficiency function in certain cases and that can help us to determine 

what should be the optimum number of processors for a problem.  

If you are increasing the problem size, if you are increasing W how judicious is it to 

increase speed?  
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Now the next question which comes to us is that even after doing all these things what is 

the best efficiency that we can get and for that we use Amdahl’s law? That everything we 

considered that there are certain overheads which will reduce the efficiency ,and efficiency 

will increase if you have larger problem, and  efficiency will reduce if you increase number 

of processors fine.  

Now, what is the best possible efficiency so, that we try to achieve that efficiency? So, 

now, if we look into a parallel algorithm, we understand that the entire algorithm is not 

parallelizable, some components such as joining results from threads like, when we are 

calculating maximum out of n numbers in p processors, each local n/ p max values will be 

joined. 

Or writing or reading from a file some I O-s they are inherently sequential that  joining the 

thread results or reading from a file , doing the load balancing, deciding how many data 

size data points will go to which processors, all these things they are inherently sequential, 

they cannot be done in parallel. Either one computer will do it and let others know or all 

the computers have to repeat the same step. So, there are always some sequential part in 

an algorithm which we cannot parallelize.  

So, Amdahl’s law gives us a quick method to estimate the speed up in that case. Let a 

serial program of data size n runs in Ts time, the total time is Ts for a sequential program 

and it has two components, one part is not parallelizable essentially sequential which is 

𝜙s(𝑛) and another part is parallelizable which we write 𝜓(𝑛). 



 

So, when we paralyze it, we cannot do anything with 𝜙s, this is sequential time in any 

parallel algorithm this time will be present, but this 𝜓 it can be distributed in many 

processors and we can reduce this time. So, the total time for this sequential program is 

𝜙s+ 𝜓(𝑛). The parallel execution time Tp , will be sum of the serial non parallelizable part 

𝜙s ,it will be always there and it cannot be parallelized and then the parallelized part can 

be divided by p if we are using p processors, and also there is an overhead. So, the parallel 

time will be  

𝜙𝑠(𝑛) +
𝜓(𝑛)

𝑝
+ 𝑇𝑜(𝑛, 𝑝) 

because this is the parallel part of the algorithm which can be reduced by using multiple 

computers and 
𝜓(𝑛)

𝑝
 plus and overhead. So, speed up is 

𝑇𝑠

𝑇𝑝
 =

𝜙𝑠(𝑛)+𝜓(𝑛)

𝜙𝑠(𝑛)+
𝜓(𝑛)

𝑝
+𝑇𝑜(𝑛,𝑝)

  

(Refer Slide Time: 33:20) 

 

Now, we assume that the time requirement for sequential part of the program is f for the 

entire program time. The total time of the sequential run is  

𝑓 =
𝜙𝑠(𝑛)

𝜙𝑠(𝑛) + 𝜓(𝑛)
 

 f is the ratio of the or the fraction of the program of the serial algorithm which cannot be 

parallelized; is the ratio of the sequential time divided by total time which will help us to 

parameterize the previous expression.  



So, the speed up bound we can obtain as that speed up 
𝑇𝑠

𝑇𝑝
 =

𝜙𝑠(𝑛)+𝜓(𝑛)

𝜙𝑠(𝑛)+
𝜓(𝑛)

𝑝
+𝑇𝑜(𝑛,𝑝)

, 𝑇𝑜(𝑛, 𝑝) is 

always greater than 0 over heads is always greater than 0,so speed up is bounded as  

𝑆 ≤
𝜙𝑠(𝑛) + 𝜓(𝑛)

𝜙𝑠(𝑛) +
𝜓(𝑛)

𝑝

 

. Now we know that 𝜙𝑠(𝑛) + 𝜓(𝑛) is equal to 
𝜙𝑠

𝑓
. So, we substitute all the terms and we 

get 

𝑆 ≤

𝜙𝑠(𝑛)
𝑓

𝜙𝑠(𝑛) +
𝜙𝑠(𝑛)(

1
𝑓

− 1)

𝑝

 ⇒ 𝑆 ≤
1

𝑓 +
(1 − 𝑓)

𝑝

 

 

So, if f is the sequential fraction of the program with p number of processors, this is the 

maximum speed up that we can get. Due to overheads ,speed up is less than equal to that 

we cannot get we cannot think of getting higher speed up, and our attempts can be only 

made to get speed up as close to this particular value and this is known as Amdahl’s law 

which gives us maximum theoretical speed up for a parallel problem. 

A fraction of the program is inherently sequential and it always hold up the scalability. 
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So, we got that 𝑆 ≤
1

𝑓+
(1−𝑓)

𝑝

. It is usually less than that because overhead is always positive 

and so, this is bounded due to overhead. The limited cases are one is that the algorithm is 

mostly sequential. 

Say we are computing Fibonacci series we cannot parallelize it, even if you are using 

multiple computers all have to do same things or every computer has to sit idle except one 

computer which will process it. So, if  the sequential part is very close to 1 in if is equal to 

1 this term will be 0. So, speed up will be less than 1 because there is an over head. 

So, speed up is less than 1. So, it is a sequential program, but if we run it in parallel 

environment speed up will be less than 1. As many processors as we are using will not see 

any benefit and speed up is always smaller than 1 .Why it is not 1? Why it is less than 1? 

Because there are over head. So, if we are using parallel environment multiple computer 

processors are there, they are interacting in between them and that is adding to over heads. 

So, that is the most and beneficial par. So, the speed up is less than 1 means parallel 

platform of strictly sequential algorithm program is always poor than single processor 

performance due to parallel overheads. In case the algorithm has negligible sequential 

component, almost the entire program can be parallelized f goes to 0, we get speed up is 

less than p, S is less than p. 

So, speed up is less than p is not exactly p ,due to parallel overheads and in between we 

will get a value of speed up which is
1

𝑓+
(1−𝑓)

𝑝

. So, if we know the algorithm if we can do an 

analysis and find out how much sequential steps are there and how many parallelizable 

steps are there, we can find out what is the maximum what is a maximum bound on its 

parallel speed up and that is what we can try to achieve and this is what is specified as  

Amdahl’s law. It is a very important law in parallel programming.  
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So, these are the references we got here and through this discussion we noted down the 

metrics for performance of parallel system, saw the  relation of efficiency with the problem 

size and number of processors and looked into isoefficiency functions.  

And Amdahl’s law is discussed which gives us the theoretical maximum speed up for any 

algorithm. With this we can start discussing on parallel programs and we will start 

discussing on open mp next then MPI followed by cuda discussion. Whenever we will try 

to parallelize a program and try to see its performance, we have the fundamentals in our 



mind and we can estimate how good is our parallel algorithm compared to the best 

theoretical parallelization possible of that problem. 

Thank you. 




