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Lecture - 07 

Bernoulli's Equation 

I. Recap of Last Lecture 

We start this lecture by re-iterating the general form and the usually-employed form of 

Bernoulli’s equation, equations (1) and (2) respectively. 
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We list out the assumptions in deriving these equations as they sequentially emerge during the 

derivations. 

1. In deriving equation (1),  

a. We started with the assumption of the flow being inviscid.  

b. Then we assumed that gravity is the only body force and is directed along the 

negative z direction 

2. Subsequently, to obtain equation (2) from equation (1), 

a. We assumed steady flow, due to which, the first term of equation (1) vanished 

b. The we assumed constant density, as a consequence of which, 
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c. Lastly, the RHS of equation (1) becomes zero. This happens under three 

situations, 

i. When dl is along a streamline, i.e. points 1 and 2 are two points on the 

same streamline 

ii. When vorticity  is the null vector, implying irrotational flow (for this 

situation, 1 and 2 can be any two points in the flow-field and are not 

restricted to lie on the same streamline line point 2.c.i above) 

iii. v   is perpendicular to dl - this situation implies a restriction on the 

choice of dl or equivalently the choice of points 1 and 2a 



Focusing on equation (2), the terms suggest that it is an mechanical energy conservation 

equation. Further, dividing the equation on the left by g gives the equation on the right which is 

frequently employed by hydraulic engineers. For this equation on the right, all the terms have 

dimension of length. In hydraulics engineering, these terms are frequently termed as ‘head’. 

Being more specific, the third term in RHS as well as LHS, 
1/2
z , is potential energy per unit 

weight, the second term in RHS as well as LHS, 
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, is kinetic energy per unit weight, i.e. 

potential energy head and kinetic energy head respectively. The first term in LHS as well as RHS 

is termed as pressure energy in many texts. However, we require to elaborate some more on this 

term to understand its role. To understand it, we take the help of an example.  

Let us assume flow through a pipe. The fluid at its inlet is ready to enter the pipe but is subjected 

to the pressure of the already flowing fluid inside the pipe. Considering a small length x  such 

that the pressure can be assumed to be constant along it, the work by the pressure for the 

incoming fluid to enter the pipe will be inlet inlet
p xA , and dividing it by unit weight gives 

inlet inlet inlet
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. Therefore, the first term in RHS as well as LHS represents the additional 

energy the systems require to maintain flow in presence of pressure, and is hence termed as flow 

energy or flow work. This is a crucial difference between a stagnant system and a flowing 

system.  

Summarily, subject to fulfillment of the assumptions listed out at the start of this lecture, the sum 

of kinetic energy, potential energy, and flow energy transferred between one point to the other 

remains conserved, as a result of there being a continuous flow process. It is important to 

understand that the energy in Bernoulli’s equation is not being possessed by the fluid but 

instantaneously transferred from one point to the other. Therefore, what is conserved is not the 

sum of energy possessed by the fluid, but sum of energy transferred from one point in flow to 

another.  

Having recapitulated Bernoulli’s equation, and with the foundation for Bernoulli’s equation and 

Euler equation thus being formed, we will work out a representative problem to illustrate some 

of the fundamentals of inviscid flows. 

Illustrative Example: 

Problem - Consider a  flow-field , , 0u Ax v Ay w= = − = , A where is a constant. Find pressure 

difference between any two points 1 and 2 in this flow field. Assume inviscid flow, constant 

 and g to be along negative z .  

Solution - We first list down the Euler’s equations for the flow (since the flow is inviscid): 
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Here, we have omitted the terms with w  beforehand as it is given zero. 

With the given expression for flow-field, velocity is evidently not a function of time. Therefore, 

the flow is steady. Consequently, the equations simplify to, 
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Further, substituting the expression for u and v , we can do partial-integration of the pressure 

term for each of these equations to get, 
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It should be noted that the third expression obtained in equation (5), particularly the  gz− term, 

is the hydrostatic pressure variation that is recovered in fluid statics. Clearly, this hydrostatic 

pressure has been obtained here as a special case of the fluid dynamics when we set  to zero, i.e. 

the concept of fluid statics is recovered as a special case of fluid dynamics when flow is zero. It 

is for owing to this possibility that as fluid mechanics has evolved over the years, there is a 

pedagogical development of not teaching fluid statics dedicatedly in the interest of 

accommodating upcoming advancements like atmospheric flows and micro/nano-scale flows. 

Combining the solutions in equation (5), the pressure in the flow-field as, 
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where, c is a constant and V represents the velocity magnitude or speed. 

The third form in equation (6) indicates that 
2
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V
p gz c+ + = holds true over the entire flow-

field, i.e. Bernoulli’s equation applies between any two-points in the flow field. Therefore, we 

obtain the difference of pressure between any two points 1 and 2 in the flow-field as , 
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While we have arrived at a solution, we can extract more insight from the fundamentals of this 

problem.  

First, as we have seen, solving the equations of motion for inviscid flow (Euler’s equation) for 

this problem has given us the same solution that we would arrive at by simply applying the 

Bernoulli’s equation. This happens because in addition to being inviscid (as requirement for 

applying Euler’s equation), this flow is also irrotational. This becomes clear by computing the 

angular velocity (rate of angular/shear deformation) of the flow, 0 0 0
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, which 

is seen to be zero. Hence, the alternative approach to solve this problem could have been to first 

investigate whether the flow is irrotational, and having confirmed that it is, simply use 

Bernoulli’s equation between the two points in question, 1 and 2. 

Second, the velocity of the flow-field also gives us 0 0 0
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, which implies that not 

only is the flow irrotational, but there isn’t any rigid-body rotation either. 

Third, the velocity of the flow-field also satisfies 0
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, implying that volume is 

conserved. However, the individual expressions are not zero. This means that there is stretching 

of fluid in one direction and compression in the perpendicular direction, such that the volume 

remains conserved. We obtain the equation of the streamlines, 
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Hence, equation of the streamlines is a rectangular hyperbola with axes at 450 to the x-y axes. 

Hence, a fluid element that is at a large y and small x flows to a point at a small y and large x, i.e. 

it compresses along the y-direction and stretches along the x-direction. An initially square fluid 

element deforms to a flattened and stretched rectangle as it flows, visualization presented in Fig 

1. This fluid element continues to stay irrotational as it flows from ABCD to A’B’C’D’ because 

the flow is initially irritation (i.e. when the element is at ABCD) as well inviscid. 



 

Figure 1: An initially square fluid element ABCD flows and deforms to A’B’C’D’ 

 

We now consider the question – “is it possible that a flow that does not rotate initially, but starts 

rotating after some time”. The factors that can make an initially irrotational flow rotational are: 

1. Viscosity 

2. Thermal Stratification 

3. Shock Waves  

4. Coriolis Effect 

The first factor, viscosity, is the most important. To elucidate this concept, we consider a person 

who steps out of a moving bus. This person would have to run a bit in the direction of the bus 

immediately after stepping down to avoid toppling. Why the person will topple if he/she didn’t 

run a bit? This is because the body of the person had an inertia because of the movement of the 

bus but the ground causes his foot to stop, thus creating a veocity gradient over the body’s 

length. This gradient occurs because of the friction of the ground. Similar to this, the viscosity of 

a fluid generates a disturbance of to the fluid’s momentum. Thus disturbance has a rotational 

effect on the fluid elements, due to which an initially irrotational flow can become rotational. 

Summarily, because of viscosity there is a rotational effect. 



We briefly and qualitatively elucidate the other three factors now. Thermal stratification means 

because of the temperature variation, there is a density variation and the lighter fluid flows to the 

top and denser fluid to the bottom. Shock waves are discontinuities that emerge in a domain 

where there is a very high speed flow. This happens the speed of the flow is greater than the 

sonic speed, which is the speed at which the disturbance propagates. As a result, the disturbances 

accumulate along a particular line which is called as a shockwave front and there is a release of 

this discontinuity called as a shockwave. Lastly, Coriolis effect is the effect on flow-field of a 

force due to the reference frame being a rotating one. This results in a side wise force. An 

example of this effect is that the ocean current in the northern hemisphere moves in a certain 

direction and in the southern hemisphere moves in another direction. 

 


