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Lecture - 06 

Euler Equation for Inviscid Flow 

I. Inviscid Flows 

In the former lectures, we have studied the kinematics of flow without getting into the details 

of what forces cause and affect the flow. We will now consider the forces involved in fluid 

flows. 

The forces acting in a flow-field can be broadly categorized into two types – driving forces 

that drive the force, and resisting forces that oppose the flow. From our prior knowledge of 

physics, we know that resistive forces in flows are called as viscous forces. However, there 

can be situations where viscous forces, although present, do not affect the flow substantially. 

Such flows are termed as Inviscid Flows. One example is fluid flowing past a solid body at 

high velocity. The effect of the wall of the body on the flow, particularly the disturbance 

caused to the fluid momentum, occurs for only a small layer near the wall, beyond which 

there is an outer layer where this momentum disturbance does not propoagate. Therefore, in 

the region, although the viscosity is finite, the momentum disturbance is small. This implies 

the velocity gradient is small enough such that the viscous effect, which is the product of 

viscosity and velocity gradient, is negligible in comparison to inertial effects. This 

comparison is quantified in terms of Reynolds number, that we shall discuss at a later stage in 

the course. 

With this qualitative example, we proceed with discussing inviscid flows. Mathematically, 

while viscous flows are represented by a second order differential equation, inviscid flows are 

represented by a first order differential equation.  

Euler Equation of Motion: The governing differential equation for inviscid flows is called 

as Euler equation of motion. To derive this equation, we consider a fluid element (i.e. a 

control mass) as presented in Fig 1 



 

 

Fig 1: A fluid element for derivation of Euler equation of motion 

 We study the force balance along the x -direction, and therefore, the forces on the element 

along the x -direction are presented in Fig 1, where xb is the body force on the fluid (which 

can be for example electrical force, magnetic force), and is therefore multiplied to the fluid 

element’s volume, x y z   . Expressing the Newton’s second law for this fluid element, we 

have, 
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In equation (1), H.O.T. implies higher order terms and xa is the fluid elements acceleration in 

the x -direction. Other notations have their usual meanings.  

In order to obtain the differential form of Newton’s second law from equation (1), we have to 

consider the fluid element as being vanishingly small. Therefore, , , 0x y z   → , giving us, 

x x

p
a b

x
 


= − +


.         (2) 

Expression the acceleration, xa , as per the Eulerian framework, we get, 
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This is the x -component of the momentum balance equation for inviscid flows, i.e. the Euler 

equation of motion for inviscid flows. Similar equations are there for y and z components, 
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Combined together, equations (3) and (4) give the Euler equation in vector form, 
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Bernoulli’s Equation Derivation: We now systematically derive the Bernoulli’s equation 

from the Euler equation of motion for invscid flow. For this, we first utilize a standard vector 

identity, 
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v v v v v v =   −   . With respect to fluid velocity, this vector identity 

signifies the relationship between the fluid’s inertial effect ( )v v and gradient of its kinetic 

energy ( )v v  and dot product of velocity with vorticity ( )v v  , where v =  is the 

vorticity. Utilizing this vector identity, we express equation (5) as, 
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We take the dot product of equation (6) with a line element in the flow-field dl . The dot 

product of the second term with dl is, 
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Similarly, the dot product of the third term with dl is,
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Furthermore, is we assume that gravity is the only body force and is expressed as ˆb gk= − , 

i.e. acts in the negative z -direction, b dl gz−  = . 

With these expressions at hand, the dot product of equation (6) with dl and then dividing by 

 gives, 
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Equation 8 is Euler’s equation motion in an alternate representation. 



If we further assume  is constant and g is independent of z , equation (8) further transforms 

to, 
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If we also assume that the flow is steady, equation (9) simplifies to, 
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Now, ( )v dl  can be expressed as the determinant 
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vanishes if at least one of the following three conditions is satisfied: 
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The third condition can only be co-incidentally be satisfied by some special flow-fields. 

However, condition 1 simply implies selection of the elemental length dl which is upto our 

choice, and condition 2 implies irrotational flow, which a family of flow-fields studied 

classically.  

When the RHS of equation (10) vanishes as a consequence of one of the conditions above, it 

can be integrated along sequence of line elements to give, 
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which is the Bernoulli’s equation between points 1 and 2 in the flow-field. 

In summary, for a steady inviscid flow, Bernoulli’s equation, equation (11), can be applied 

between two points that are on the same streamline if the flow is rotational and between any 

two points in the flow-field if the flow irrotational. 


