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Lecture – 57 

Compressible Flows (Converging Diverging Nozzle) 

In the previous lecture, we arrived at the important conclusion that a converging nozzle is 

limited to accelerate a flow only to Mach number 1 at its throat, and not to higher speeds. 

Hence, to accelerate the fluid to Mach numbers larger than 1, we need to design beyond a 

convergent nozzle and the standard approach is to design a converging-diverging nozzle.  

Compressible flow through converging-diverging nozzle: 

To understand how a converging-diverging nozzle will help us achieve super-sonic speed, we 

will first recall our analysis of compressible flow through a variable area conduit (lecture 52). 

We had arrived at the relation between change in area and change in Mach number (equation 

(13) of lecture 52) as, 
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We point out here that we are considering converging-diverging nozzle as a variable area 

section attached ahead of the converging nozzle studied in the last lecture. Hence, the throat 

is now at an intermediate axial location and corresponds to the point of least nozzle area. 

Furthermore, at its maximum utilization, the converging section provides us with flow of 

Mach number as 1 at its throat, and we want to utilize the newly-attached variable area 

section ahead to further increase the Mach number along the rest of the nozzle length. In 

mathematical terms, it means that we want dM  to be positive. Since 21 1 0M M  −   is 

expected for this additional length, we observe that all the terms on RHS of equation (1) are 

positive and this implies dA  should be positive.  Hence, this additionally attached variable-

area section should be a diverging section. Resultantly, we have deduced that we require the 

commonly-studied converging-diverging nozzle to accelerate a compressible flow from sub-

sonic to super-sonic speed. However, merely using a converging-diverging nozzle does not 

guaranteed that we will get Mach number greater than 1 in the diverging section and the 

outlet. To achieve this objective, we have to appropriately attune the back pressure, i.e. the 

pressure at the exit of the nozzle (exit of the diverging section for the converging-diverging 

nozzle being studied here). 

For this, we will now look into the influence of back pressure on the Mach number. We 

present, in figure 1, the profile of the converging-diverging nozzle on top and variation of 
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present, in figure 2, the variation of 
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bp  is the back pressure. 



Before proceeding, we had deduced (in lecture 52) that if sonic condition (i.e. 1M = ) exists 

in the nozzle, it will be at the throat (i.e. where area is minimum and thus dA is zero), but it is 

not assured that there will be sonic condition at the throat – the condition at the throat can 

also be subsonic, depending on the back pressure.  

Hence, it is possible to have multiple scenarios. These scenarios are explored by keeping the 

stagnation pressure (i.e. the pressure in the reservoir that is connect to the inlet of the nozzle 

at the start of its converging section) fixed and varying the back pressure. The scenarios that 

we will get are bucketed into two cases:  

Case 1 – The flow speed at the throat is less than the sonic speed. This is represented by the 

two orange plots in figure 1. The back pressure is lower for Q as compared to P. 

Case 2 – The flow speed at the throat is equal to the sonic speed. This is represented by the 

two blue plots in figure 1. These plots are identical for the converging section up to the 

throat, i.e., the flow converges to a sonic condition at the throat for either scenarios. 

However, after this point, the two plots deviate from each other – one plot observes further 

decrease in pressure and culminates at S, leading to a supersonic flow, and, another plot 

observe increase in pressure after the throat and culminates at R, leading to a subsonic flow. 

To understand why these two possibilities arise, we recall that we had obtained the relation 

(equation (8) in lecture 53), 
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In equation (2), *A  is the reference sonic condition area, which may or may not exist in the 

actual nozzle. However, for this particular scenario (i.e. the two blue plotlines in figure 1), 

flow at the throat is sonic and so, *A  is the area of the throat. Substituting the value of A  as 

the area of the exit of the nozzle in equation (2), we can solve for the Mach number at the 

exit. However, the form of equation (2) indicates that it will admit two solutions for this 

Mach number. These two solutions actually correspond to the points R and S, i.e. the 

subsonic and supersonic conditions at outlet.  

Here, we state a crucial point. The objective of attaching the additional divergent section was 

to obtain a supersonic flow at the outlet. This objective gets quashed if we allow the outlet 

condition to correspond to point R. Therefore, to recovers the maximum possible acceleration 

from the converging-diverging nozzle, one has to regulate the back pressure to the point W – 

hence, the point W is also called the design condition of the nozzle and specifies the designed 

back pressure for the nozzle that the user is expected to provide.  

Now, if the back pressure is regulated to a value between R and W, we obtain a shock in the 

flow. We consider increasingly lower back pressure starting from R. We first consider the 

two points – S and T. For these back pressure values, we obtain a normal shock inside the 

diverging section of the nozzle, illustrated in the figure 1 as the green plots. The flow prior to 

the normal shock is the same as would be for design condition, but the flow after the normal 

shock is slowed to subsonic. Also, the location of the shock gets closer to the outlet as the 

back pressure gets smaller. This reaches a limiting case when the normal shock is at exactly 

the exit cross-section of the nozzle, corresponding to the point U. If the back pressure is 



regulated to any value between U and W, e.g. V, we obtain an oblique shock further outside 

the nozzle from the exit.  Lastly, we note that it is possible to regulate the back pressure to be 

even smaller than W, i.e. X. In such a situation, we obtain an oblique expansion wave outside 

the nozzle. 

Summarily, as we increase the back pressure from P to W, 

P - the condition throughout the nozzle is subsonic 

Q - the condition throughout the nozzle is subsonic, but the flow speed is higher than for P 

R – the condition at the throat is sonic, but the back pressure provided is such that the flow at 

the exit has slowed down to subsonic condition 

S – the flow becomes the supersonic for part of the divergent section of the nozzle after the 

throat but undergoes a normal shock within the divergent section and transitions to subsonic 

condition, and hence the exit flow is subsonic 

T - the flow becomes the supersonic for part of the divergent section of the nozzle after the 

throat but undergoes a normal shock within the divergent section and transitions to subsonic 

condition, and hence the exit flow is subsonic; however, the shock front is further ahead than 

for S 

U – the flow becomes the supersonic for part of the divergent section of the nozzle after the 

throat but undergoes a normal shock at the nozzle exit and transitions to subsonic condition, 

and hence the exit flow is subsonic 

V – there is an oblique shock outside the nozzle 

W – the provided back pressure matches the design condition and we obtain a supersonic 

flow with the maximum possible acceleration using the particular convergent-divergent 

nozzle being considered 

X – we obtain an oblique expansion wave outside the nozzle 

 



 

Figure 1: Variation of pressure inside the nozzle with decreasing value of back pressure 

 

Figure 2: Variation of mass flow rate with back pressure 

We now ascertain how the mass flow rate will vary with the back pressure, as presented in 

figure 2.  

The mass flow rate increases as we decrease the back pressure starting from P, but it gets 

saturated once the back pressure reduces to R. Beyond this, any further reduction in back 

pressure leads to increase in Mach number, eventually transitioning to supersonic flow at exit 

when back pressure reduced to W, but it is not accompanied by any increase in the mass flow 

rate. 



Hence, we have now formed a background that gives us the design specification for a nozzle 

based on the desired output – a converging nozzle can be used to accelerate a flow to 

subsonic or in the limiting case a sonic condition, whereas to obtain supersonic flow, we have 

to use a converging-diverging nozzle, the diverging section coming in use to accelerate the 

flow beyond sonic speed.  

We will now work out an example problem to illustrate the concepts and develop quantitative 

understanding of compressible flow through a converging-diverging nozzle. 

Example: Consider the converging nozzle, with the three sections 1, 2, and 3 with their areas 

given. Note that section 2 is any arbitrary section and not necessarily the throat. A normal 

shock occurs at the section 2. Also given is: 
1M  = 2.5, 1p  = 40 kPa, 

1T  = 30 0C. Find: (1) 
1m , 

(2) 
3M , (3) stagnation pressure at section 3, 0,3p . 

 

Figure 3: Schematic for example problem 

 

Solution: 

Before proceeding to obtain the solution, we highlight two crucial points.  

First, in the converging section, we observe Mach number higher than 1 (
1M  = 2.5). While 

this might seem to contradict the deduction that ‘we cannot obtain a Mach number higher 

than 1 in a converging nozzle or converging section of a converging-diverging nozzle’, it is 

not so. Stated more clearly, the deduction actually says that a subsonic flow cannot be 

accelerated to a supersonic flow by passing it through a convergent nozzle (or convergent 

section of a convergent-divergent nozzle). However, if the inlet flow itself is supersonic, 

Mach number can be greater than 1 inside the converging nozzle – Mach number will 

decrease though, owing to the decreasing cross section area of the converging section along 

the axial length. 

Second, because shock is occurring at the section 2, we expect the flow to be isentropic 

between section 1 and just before section 2 (we call this region 2-upstream and denote it with 

‘2u’), and between just after section 2 (we call this region 2-downstream and denote it with 

‘2d’) and section 3. Between 2u and 2d, we have to use the relations for shock (as obtained in 

lectures 54 and 55) to relate the flow properties. 

We first obtain 
1m , which is given as, 
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Substituting the numerical values of all the parameters, we get 
1m  as 0.96 kg/s. 

Next, we have to obtain 
3M . To do this, we have to move along the flow and first obtain the 

2uM . We start with equation (2) and apply it at section 1, 
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Since 1 *A  is the only unknown in equation (4), we are able to obtain its value as 9.1022 cm2. 

Now, 1 *A  is the same as 2 *uA . Hence, applying equation (2) to section 2u now, we have, 
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Equation (6) has 2uM  as the only unknown and upon solving, we will arrive at two solutions, 

one higher than 1 and one lower than 1. Since 2u is upstream of the shock and we have 

deduced earlier in the course that a shock transitions a supersonic flow to a subsonic flow, we 

admit the solution that is higher than 1, which is 2.1844. Next, we related 2uM  and 2dM  as 

per the relation between the Mach number at the two sides of a normal shock (equation (4) in 

lecture 55), 
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This gives us 2dM  as 0.5492. 

Now, we again take the help of equation (2) to obtain 2 *dA , 
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which comes as 14.3295 cm2. Note that due to the presence of shock at section 2, the *A  is 

different on either side and thus, we have to obtain 2 *dA  separately from 2 *uA .  The 

obtained value of *A  at 2d remains the same at 3 due to the isentropic nature of flow 

between 2d and 3, i.e. 
3 2* *dA A= . We again use equation (2) and apply it at section 3, 
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Equation (9) has 
3M  as the only unknown, and upon solving we will obtain two roots, one 

larger than one and one smaller than 1. To determine which solution to admit, we examine 

the equation relating dA  with dM , 
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Since 2dM  is less than 1, the term 
22( 1)
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 is negative at 2d. And dA  is negative 

throughout the region between 2d and 3. Therefore, dM  will start decreasing at 2d and will 

continue decreasing without 
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 switching sign anywhere. Therefore, 

3M  is smaller 

than 1. Hence, the obtained value of 
3M  is 0.27. 

Lastly, to get the stagnation pressure 0,3p , we use a similar approach as is used to obtain 
3M . 

That is, we start from section 1 and proceed with the flow, utilizing the 0p

p
 relation (equation 

(9) of lecture 50), 
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instead of equation (2). Applying equation (11) at section 1, 
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we get 0,1p , which is the same as 0,2up . Hence, we have, 
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As we had derived earlier (equation (7) of lecture 54), the pressure upstream and downstream 

of the shock at section 2 are related as, 
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and these pressures are related to the respective stagnation pressures (as per equation (11)) as, 
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Combining equation (14) and (15), and then equation (13), we have, 
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Once we obtain 0,2dp  using equation (16), 0,3p  is the same, i.e. 0,3 0,2dp p= . Hence, we obtain 

0,3p  as 435 kPa. 

 

 

 

 


