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Lecture – 55 

Compressible Flows  

       (Normal Shock) (Contd.) 

Continuing from the previous lecture, we will obtain an explicit expression for 
2M  in terms 

of 
1M , i.e. the downstream Mach number in terms of the upstream Mach number across a 

normal shock wave front. Hence, we proceed with the equation obtained in the previous 

lecture, 
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To aid the ensuing algebra, let use denote 2

1M x=  and 2

2M y= . This, equation (1) is, 
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Hence, we finally get equation (1) as, 

( )( ) 2 2 ( 1)( ) 0x y xy x y − − + − + = ,       (2) 

where x  is 
2

1M  and y  is 
2

2M .  

Note that one solution of equation (2) is the trivial solution corresponding to x y= , i.e. 

1 2M M= . This trivial solution corresponds to the situation when the region being enclosed 

by control volume is not a normal shock wave front. Note that we recover this trivial solution 



because we had not explicitly restricted the control volume considered in the last lecture to 

enclose a normal shock wave front. Rather, it has the capability of accommodating a normal 

shock wave front and hence, equation (2) allows for two solutions – one corresponding to a 

normal shock wave front and another corresponding to a trivial solution which corresponds to 

any arbitrary region in the compressible flow field. Being interested in the normal shock 

wave front, we now further analyse the non-trivial solution. The non-trivial solution arises 

when, 
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Substituting back  2

1M x=  and  
2

2M y= , we get 
2M  in terms of 

1M  as, 
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For the case of air, 1.4 = , and substituting this numerical value in equation (4), we get, 

2
2 1
2 2

1

5

7 1

M
M

M

+
=

−
.         (5) 

While the algebra presented above is tedious, it is an important part of the analysis as it 

allowed us to observe that the trivial solution is also recovered from the mathematical 

formulation, enlightening us that we have not constrained the control volume being analysed 

(presented in the previous lecture) to enclose a normal shock wave front, rather it is capable 

of accommodating one. 

We present below in figure 1, a graph of variation of 
2M  with 

1M , based on equation (4), i.e. 

the non-trivial solution of equation (2). While the complete trivial solution is not presented, 

its intersection with the non-trivial solution is presented as the point P, which corresponds to 

both 
2M  and 

1M  being 1.  

 

Figure 1: Variation of  
2M  with 

1M  obtained based on equation (4), the non-trivial solution 

of equation (2) 



Observing the nature of the curve, we deduce that when 
1M  is higher than 1, 

2M  is 

constrained to be lower than 1, which corresponds to the section of the curve to the right of P 

(marked with the red arrowhead). On the other hand, when 
1M  is lower than 1, 

2M  is 

constrained to be higher than 1, which corresponds to the section of the curve to the left of P 

(marked with the blue arrowhead). The former situation represents a supersonic flow passing 

the normal shock wave front to become a subsonic flow and the latter situation represents a 

subsonic flow passing the normal shock wave front to become a supersonic flow.  

Hence, the analysis of figure 1 done above has allowed us to deduce there are two possible 

scenarios at the normal shock wave front: 

Possibility 1: 
1M  > 1 and 

2M  < 1 

Possibility 2: 
1M  < 1 and 

2M  > 1 

Note that the a flow that is close to the incompressible limit, which corresponds to both 
1M  

and 
2M  less than 1, is not a possibility. Hence, we have mathematically deduced that a shock 

wave cannot occur close to the incompressible limit. 

Returning to the topic of normal shock, we see that the analysis presented till here, which is 

based on principles of fluid mechanics and the first law of thermodynamics, is incapable of 

informing us which of the two possibilities can occur in a real-world situation. To ascertain 

this, we first observe that the question of ‘which one of these possibilities is realizable’ is 

related to the directionality of the system. And the directionality of a system is governed by 

the second law of thermodynamics. Therefore, we will now calculate the change in entropy 

across the normal shock wave front.  

Change in entropy across the normal shock wave front: 

To analyse the change in entropy across the normal shock wave front, we start with the first 

law of thermodynamics,   

q di w = + .          (6) 

In writing equation (6), we have again neglected the changes in kinetic energy and potential 

energy. While this had been an appreciably valid assumption till now, its validity can be 

doubted in the case of a shock wave. However, for a process where thermal parameters are 

governed, the changes in kinetic energy get overpowered by the changes in thermal energy. 

Therefore, we continue with equation (6). We will now assume that the flow is quasi 

equilibrium.  

It should be noted here that the reversible quasi-equilibrium process being considered here is 

only a hypothetical process that is being used to obtain an expression relating changes in 

thermodynamic properties. The real process will of course be different will include the 

irreversibility brought about by the shock wave. However, as iterated earlier, an expression 

relating changes in thermodynamic properties remains valid regardless of the process using 

which that they are derived and the process which they are undergoing. We are able to make 

this last statement because thermodynamic properties are point functions and hence path 

independent. In the current situation, the thermodynamic property is entropy.  



Since we are choosing a reversible path to analyse the change in entropy, we write equation 

(6) as, 

Tds dh vdp= − .         (7) 

In obtaining equation (7) from equation (6), we have used the definitions q Tds =  (which 

holds true for a reversible process) and i h pv= − . Further, considering that the fluid is an 

ideal gas, we use the equation of state and express equation (7) as, 
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Further assuming the gas to be calorically perfect (i.e. pc  is a constant), we are able to 

integrate equation (8) to get, 
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Now, the ratios 2

1

T

T
 and 2

1

p

p
 are functions of 

1M  and 
2M , as was derived in the previous 

lecture. Also, 
2M  itself is a function 

1M  as per equation (4). Knowing the expressions for 

2
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T

T
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p
 and 

2M  as functions of  
1M  (equations (3) and (7) in last lecture and equation (4) in 

this lecture), we can evaluate 2 1s s− .   

We now write the second law of thermodynamics, which defines entropy generation gens  as, 

12
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s s s
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and states that gens   should always be positive. Since the shock 

takes place adiabatically, 12q   is zero and hence, gens   is simply 

2 1s s− , which as stated above, is obtainable as a function of  
1M . 

In figure 2, we present this functional variation of  gens  with 
1M . 

As  gens  is constrained to be positive, only the section of the curve 

above the horizontal axis can be admitted as solution. Hence, 
1M  

is always greater than 1 with the limiting case of 1 1M =  being the 

situation where there is no shock and no entropy generation. 

Hence, we have deduced that only ‘Possibility 1’ is realizable, i.e. 

“a shock always converts a flow from supersonic to subsonic and 

never from subsonic to supersonic, a restriction arrived at by the 

second law of thermodynamics.” All the flow variables change 

abruptly across the shock wave front and temperature and pressure 

 

Figure 2: Variation of  gens  

with  
1M  



undergo abrupt increase in magnitude. 

 


