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Lecture – 54 

Compressible Flow (Normal Shock) 

In this lecture, we will discuss the concept of shock, more specifically normal shock, under 

the topic of compressible flows. 

We briefly recapitulate some pertinent concepts. Let us consider a supersonic flow (a flow 

with Mach number greater than 1). A supersonic flow is one in which the disturbance speed 

(sonic speed) is smaller than the speed of the source of disturbance. Observed from the 

perspective of the source, this situation is equivalent to the entire fluid medium moving at the 

same speed but in opposite direction. Under such a situation, we have earlier discussed that 

there is formation of a Mach cone (also called as ‘zone of influence’) – the region within 

which the disturbance caused by the source is perceived. The region outside this Mach cone 

does not perceive the disturbance caused by the source, and is also referred to as the ‘zone of 

silence’.  

Consider the example of an aircraft moving at supersonic speed in the leftward direction. 

From the perspective of the aircraft, the air is moving in the rightward direction at the same 

speed and hence approaching it (and will eventually interface with it). Consequently, the air 

will eventually cross the border of the zone of silence and the zone of influence. As the air 

crosses this border, it is be subjected to a sudden discontinuity, which manifests itself as a 

discontinuity in various properties like pressure, density, temperature and so on. This 

discontinuity is what is called shock wave. Summarily, in a supersonic flow, the physical 

origin of the discontinuity in flow properties commonly called as shock is that the source of 

disturbance propagates at a speed which is faster than the disturbance speed itself, due to 

which, the disturbance accumulates at certain locations and the accumulation gets released as 

the shock wave propagates. 

Shock wave can form in various ways. One of the commonly studied ways is when the 

direction of flow can be such that the front of the wave across which the above-discussed 

discontinuity exists is perpendicular to the flow direction. Such a shock is called normal 

shock. On the other hand, if the angle is different from 900, it is called as oblique shock. In 

this course, we will primarily study normal shock.  

Theory of normal shock: 

A shock wave front is a wave front where there is an abrupt change in properties of the flow, 

like pressure, density, velocity, temperature, etc. We recall that while considering the usual 

sound wave as well, we consider a front across which properties vary. However, these 

variations, for a usual sound wave, are smooth and infinitesimal, and hence, such a wave is 

called as a weak wave. In contrast, the variations are finite and abrupt for a shock wave, and 

hence, a shock wave is a strong wave.  Furthermore, we encounter shock only under the 

purview of flows with Mach number close to 1, and shock does not occur for flows close to 

the incompressible limit. We will see why this is the case as we proceed in the theory of 

normal shock. 



 

Our first objective in the theory of normal shock is to relate the properties downstream of the 

shock wave front with properties upstream of the shock wave front, and, to figure out under 

what circumstances (characterized by the Mach number) will the shock occur. To this end, 

we consider a control volume (dashed rectangle) around a normal shock wave front (solid 

line), as presented in figure 1. The control volume is thin but has a finite area, and it encloses 

the normal shock wave front. The properties upstream are denoted with the subscript 1 and 

the properties downstream are denoted with the subscript 2.  

We will apply the mass balance, momentum balance and energy balance equations on this 

control volume. 

 

Figure 1: Normal shock wave front and the control volume enclosing it 

We start with mass balance equation, 

1 1 2 2 1 1 2 2Au Au u u   =  = .       (1) 

Assuming the fluid to be ideal, we express density in terms of pressure and temperature, and 

thus, equation (1) becomes, 
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Further, we know that u M RT= . We recall that the expression for sonic speed as 

RT was derived for an ideal gas undergoing an isentropic process (the derivative of 

pressure with density, which is the sonic speed, comes out as RT  when the process is 

adiabatic and reversible, i.e. isentropic) . However, the process by virtue of which shock 

occurs is by no means isentropic (as it includes a discontinuity). The reason we are still able 

to use the derived expression for sonic speed is because we are using sonic speed as a 

property. And while the expressions for thermodynamic properties can be obtained using a 

certain process, once derived, the expression remains valid regardless of what process the 

fluid is undergoing, i.e., expression for a thermodynamic property is not dependent on the 

process by which it is derived. 

Hence, we continue with equation (2) as, 
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After mass conservation equation, we will now consider momentum balance equation. The 

expression for momentum balance is the sum of forces on the control volume equals the net 

flux of momentum through its control surfaces, i.e., 

1 2 1 2p A p A mu mu− = − + .        (4)  

From mass conservation equation, we know, 
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Hence, equation (4) becomes, 
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Note that in equation (6), we encounter terms of the form 2p u+ , as opposed to what we 

would get when using Bernoulli’s principle, 21

2
p u+ . This excess 21

2
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the irreversibility in the system. We further substitute 
p

RT
 =  and u M RT=  to simplify 

equation (6) to, 
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Lastly, we consider energy balance equation, 
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This is essentially the first law of thermodynamics, with the assumptions of uniform 

properties at the boundaries of the control volume and negligible changes in potential energy. 

We briefly remind ourselves the meaning of enthalpy h  appearing in equation (8). Enthalpy 

is the sum of internal energy, i  and flow energy, 
p


. When a fluid is flowing with thermal 

effects, in addition to kinetic energy, potential energy and flow energy, (i.e. the three forms of 

energy we encounter in the context of Bernoulli’s equation), the total energy of the fluid has 

another form of energy called the internal energy. This internal energy is the intrinsic thermal 

part of the fluid energy which is associated with the temperature of the fluid, and would have 

been the sole contributor to the fluid’s total energy in absence of flow and potential energy 

effects. However, under flow, the total thermal energy, or flow, of the fluid is its internal 

energy plus its flow energy, together called as enthalpy.  

Now, under the assumption of the fluid being a calorically perfect gas, equation (8) is 

expressed as, 
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In writing the topmost version of equation (9), we have substituted ph c T=  (obtained by 

integrating pdh c dT=  thanks to the assumption of calorically perfect gas) and u M RT=  . 

In writing the middle version of equation (9), we have used the definitions p vc c R− =  and 
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Summarily, equations (3), (7) and (9) are the equations of mass conservation, momentum 

conservation and energy balance for the control volume enclosing the normal shock front, as 

presented in figure 1.  

Before proceeding with algebraic analysis, we discuss the interim objective. We know the 

upstream value of Mach number 
1M . From this and the analysis above, we want to obtain the 

downstream Mach number, 
2M . The reason we want to obtain the 

2M  is that it will enable 

us to obtain all the downstream properties based on the available information of upstream 

properties, upstream Mach number and downstream Mach number. Also, we will be able to 

obtain the reference stagnation properties and the reference sonic condition properties on both 

sides of the normal shock wave front. Here, we emphasize that the flow is respectively 

isentropic on either side of the normal shock wave front, and it is adiabatic at the normal 

shock wave front due to the rapid nature of the process but it is not reversible. Hence, the 

reference stagnation properties and reference sonic condition properties are two different 

unequal sets of constants on either side of the normal shock wave front, and it is of interest to 

obtain these distinct sets of reference properties.  

Hence, we want to obtain the missing information of the Mach number immediately 

downstream the normal shock wave front, and to do that, we use equations (3), (7) and (9). 

We eliminate 1p  and 
2p  from equations (3) and (7) by expressing each in the form of LHS 

as 1

2

p

p
, and then equating the two. This way, we have, 
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We now substitute 1

2

T

T
 from equation (9) into equation (10) to get, 
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Expressed alternatively by squaring both sides, we have, 
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We want to algebraically manipulate equation (12) to obtain an explicit expression for 
2M  in 

terms of 
1M , which we will take up in the next lecture. 


