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Lecture – 53 

Compressible Flows (Reference Sonic Properties) 

Reference Sonic Conditions: 

Reference sonic conditions were introduced in the previous lecture. These are hypothetical 

reference conditions which would exist in a given flow at a point if at that point, Mach 

number is one. While there is no necessity of a point with Mach number being 1 in a 

particular flow field, there is always such a hypothetical reference state where Mach number 

is unity, and the corresponding flow conditions are called “reference sonic conditions”. These 

reference sonic conditions, for an isentropic flow, are demarcated using the superscript * .  

Hence, the mass conservation relating any arbitrary cross section in a duct to the reference 

sonic condition in that duct is, 

* * *Au A u = .         (1) 

Since *u  is the sonic speed, it is simply *RT .  

We re-emphasize that the flow being studied here is an isentropic flow, and therefore, the 

reference sonic conditions remain the same and is  demarcated with the superscript * . For a 

change in the isentropic nature of the flow, the sonic conditions also change and hence, 

reference sonic conditions also change. An example where a change in isentropic nature of 

the flow occurs in the presence of a shock wave, as we will discuss ahead in the course.  

Continuing with the described flow being isentropic, we have the expressions for u  and *u  

as, 
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Dividing these terms, we have, 
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From equation, we obtain the relation between 0T  and *T  as, 
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In obtaining equation (5), we have substituted * 1M = , which would be the case for the 

hypothetical reference sonic condition. Dividing equation (5) by equation (4) gives us the 

relation between T and *T as, 
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Next, following the equation for adiabatic processes, 
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we have obtained the expression for 
*
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
. Next, we obtain the expression for 
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the equation (1), with  
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 already known. Hence, using equations (1), (6) and (7), 

we obtain, 
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 Hence, in equation (8), we have obtained an expression for area A as an explicit function of 

Mach number M and reference sonic area *A . This allows us to directly obtain the area at a 

location given the Mach number at that location. However, given area at a location, equation 

(8) admits two solutions for the Mach number - one corresponding to subsonic condition, 

another corresponding to supersonic condition. Another way to look at it is as follows. When 

M is 1, we can see from equation (8) that *A A= . And when A  varies from *A , it gives rise 

to one of two conditions - either M greater than 1 or M less than 1.  

Summarily, we have obtained analytical expressions for terms like 0p

p
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  in terms of Mach number and  . For a calorically perfect gas, it is easy to obtain a 

table for variation of these terms whereas for real gases like air, tabulated values for different 

combinations of Mach number and   are available in textbooks on compressible flows.  

We have now learnt the analysis of compressible isentropic flow through a variable area duct. 

We will learn in coming lectures how the analysis gets altered when the condition of 



isentropic flow doesn’t anymore hold true throughout the flow. For the rest of this lecture, we 

will consider a couple of illustrative problems. 

Example 1: Consider isentropic flow in a channel of varying area between sections 1 and 2. 
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Solution: 
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Knowing the value of 
1M  and given   is 1.4 for air, we get 

2M  as 2.98. 

To get 2

1

A

A
, we make use of the fact that the flow is isentropic and thus *A  is a constant. 

Thus, 
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The function ( )f M  is already known (equation (8) above) and substituting the numerical 

values, we get 2

1

A

A
 as 2.46. 

Now the ratio of 2

1

A

A
 being 2.46 (higher than 1) does not tell us that the nozzle is necessarily 

diverging, it only tells the ratio of area between sections 1 and 2 (whose order along the axial 

length is not given). To get the shape of the nozzle, we have to use the dA  expression 

(equation (13) of last lecture) in terms of Mach number and its change, i.e., 
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Now, since both 
1M  and 

2M  are greater than 1, we know that the bracketed term on the RHS 

of equation (11) is positive throughout the region between sections 1 and 2. And 

2 1 2.98 2.0 0.98 0dM M M= − = − =  . Resultantly, dA  is also positive and hence the duct is 

diverging. 

Example 2: Consider a converging-diverging nozzle as shown in figure 1. The channel 

diameters values are as depicted. Assume isentropic flow. Also given is the stagnation 

temperature 0T = 300 K, velocity at section 1 is 1u = 72 m/s and pressure at section 2 is 
2p  = 

124 kPa. Find: (1) pressure at section 1 ( 1p ), (2) Mach number at section 2 (
2M ), and (3) 

mass flow rate of air ( airm ). Consider other properties as the standard ones for air. 

 

Figure 1: Figure for Example 2 

Solution: 

To get 
1M , we use, 

1 1
1

1 1

u u
M

c RT
= = .         (12) 

Here, 1u ,   and R  are known. To obtain 
1T , we use the energy conservation equation 

reference with stagnation condition, 
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Obtaining 
1T  from equation (13) and substituting into equation (12), we get  

1M = 0.208.  

Now, to evaluate 
2M , we use equation (8). First, applying equation (8) for section 1, 
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In equation (14), *A  is the only unknown and hence we obtain the value of *A . 

Subsequently we apply equation (8) for section 2, 
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Now, in equation (15), 
2M is the only unknown and hence we obtain 

2M  = 0.831. Because 

the flow is subsonic at section 1 (
1M  = 0.208), it remains subsonic in the converging section 

and we have admitted the solution for 
2M  which is less than 1 – we will see ahead in the 

course that a converging section cannot accelerate a subsonic flow to supersonic (and can 

only maximize it to sonic) at its throat. 

Next, to obtain 1p , we first obtain 
0p , for which we use the equation, 
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which has been derived in Lecture 50. We apply this equation at the section 2,  
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where only 
0p  is unknown and hence we obtain its value. Subsequently, applying equation 

(15) at section 1,  
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we have 1p  as the only unknown and we get its value as 189 kPa. 

In obtaining 
2M  and 1p  above, we have demonstrated the utility of the expression relating 

fluid properties at given point in flow to their reference properties, i.e. stagnation properties 

and reference sonic properties. 

Lastly, to obtain airm , we use, 

1
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1

air

p
m Au Au

RT
= = = 0.313 kg/s. 

To summarize, in this lecture, we have seen how to handle problems related to variable area 

ducts in isentropic compressible flow. The interesting situation is when the flow continues to 

be adiabatic but is no longer reversible (and hence deviated from being isentropic), a situation 



that occurs very prominently during a shock wave in the flow. In the next lecture, we will 

take up a special case of shock wave in the flow, i.e. when the front across which there is an 

abrupt discontinuity in fluid properties because of the shock is perpendicular to the flow 

direction, commonly called as a normal shock. 


