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Lecture - 52 

Compressible Flows (Variable Area) 

Isentropic compressible flow through variable area duct (continued): 

Continuing from the last lecture, we proceed with the analysis of compressible flow through a 

variable area duct, presented in figure 1. Here, we study a special class of compressible 

flows, those which are also isentropic. 

 

Figure 1: Variable area duct 

To analyse the flow behaviour in this variable area duct, we begin with the basic conservation 

equations, mass conservation equation (or continuity) equation and momentum conservation 

equation.  

Importing from the previous lecture, the mass conservation equation is, 
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where,  is density, A  is cross-sectional area and u  is average axial velocity, and the 

subscripts 1 and 2 imply two arbitrary cross sections along the axial length of the duct. 

Equation (1) is simply obtained by applying the Reynolds transport theorem on a control 

volume over a given section of the length of the duct, as illustrated in figure 1. Please note 

that equation (1) holds true even when v is non-zero, i.e. there is a vertical component to the 

velocity field, which is a realistic possibility with a variable-area duct. This is because the 

boundaries 1 and 2 are vertical and hence, the vertical velocity (whose dot product with the 

normal to the boundaries becomes zero) does not contribute to the mass flux across 

boundaries (the mass flux across the other two boundaries is already zero as these boundaries 

are coincident with the duct walls). Also, please note that u  in equation (1) is the average 

axial velocity average over the cross-section.  

Expressing in differential form, equation (1) is, 
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Next, we consider the momentum conservation equation. For the situation presented here, as 

we had discussed in the last lecture, the momentum conservation does not boil down to 

Bernoulli’s equation due variations in density. Here, we consider the flow to be inviscid. We 

observe that the consideration of inviscid flow is not an independently new assumption but 

actually follows from the assumption of isentropic flow– this is because any friction present 

in the flow, which is bound to occur for a flow with viscosity, will disturb the reversibility of 

the flow and hence prevent the flow from being isentropic (as it will prevent the flow from 

being reversible). Therefore, when considering isentropic flow, we cannot consider the flow 

to have viscosity. With simplification of inviscid flow, we know that the momentum 

conservation equation reduced to Euler equation. 

Proceeding with the Euler equation for momentum conservation, we have the one-

dimensional equation (imported equation (5) from lecture 48), 
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Absence of a body force term in equation (3) indicates that we have neglected the changes in 

potential energy of the fluid. Because of the high magnitudes of kinetic energy and its change 

(as compressible flows are very high-speed flows), potential energy changes will indeed be 

negligible.  

Substituting the expression for  from equation (2), we get, 
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Since 
dp

d
 is 2c  as was derived in earlier lectures ( c  is sonic speed), equation (4) further 

transforms to, 
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The final form of equation (5) indicates that whether an increase in area will lead to an 

increase or decrease in flow speed is determined by the Mach number. If 1M  , the changes 

in A  and u  are conversely related, and hence increase in area will lead to decrease in flow 

speed and vice versa. This is the case for subsonic flows (i.e. flows with flow speed smaller 

than sonic speed) and the inference above continues to hold in the incompressible limit as 

well. On the other hand, if 1M  , the changes in  A  and u   are directly related, and hence 

increase in area will lead to increase in flow speed and vice versa. This the case for 

supersonic flows (i.e. flows with velocity larger than sonic speed). A design principle which 

one can recover from the analysis above is that if one wants to achieve acceleration in a 

supersonic flow, the duct has to be designed with a diverging profile (opposite is the case for 

subsonic flows).  



A word of caution here is that here we are considering isentropic flow, and so, the inferences 

above cannot be generalized to any flow – a situation where the flow will cease to be 

isentropic is when viscous effects become important. 

The duct presented in figure 1 is a converging-diverging passage and is a crucial one in the 

context of compressible flow.  

Based on the two regimes of relation between change in duct area and change in flow speed 

as obtained above, we realize that if a fluid has to be accelerated from subsonic speed to 

supersonic speed, one needs to pass it through a converging-diverging duct. The is a prime 

reason for the importance of converging-diverging ducts in compressible flows. Furthermore, 

if we want to maximize the mass flow rate in this mode of acceleration (from subsonic to 

supersonic), we need to take a keener look at what happens at the throat – the throat is 

defined as the axial location where the duct area is least and thus, 0
dA
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throat, equation (5) becomes, 
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For equation (6) to be satisfied, either Mach number has to be 1, in which case, change in 

velocity is not restricted to any particular value, or, change in velocity is zero and hence 

velocity is either maximum or minimum (depending on whether Mach number is larger than 

1 on smaller than 1). Furthermore, looking at equation (5), we observe that when Mach 

number is 1, dA  will necessarily be zero. Summarily, if Mach number is equal to 1 at an 

axial location, that axial location must be at the throat, but the converse is not true (i.e. if an 

axial location is the throat, Mach number at that axial location is not constrained to be 1). 

Indeed, the situation when Mach number at throat is not 1 is when the velocity is not 

changing at the throat, and is either maximum or minimum.  

An important point about equation (5) is that while it expresses 
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. Since the characteristics of flow are 

uniquely dictated by Mach number, finding such a dependence is of interest. Also, the 

variation in Mach number with the axial distance will dictate the relation between 
dA
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and utilize the energy conservation equation and equation of state. 

Using the equation of state for an ideal gas and under the consideration of the flow being a 

reversible adiabatic process, we have c as RT . Also, the definition of Mach number M is 
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Hence, we have arrived at a relation of 
du

u
 with 

dM

M
.  Since 

dc

c
is not going to be handy for 

algebraic analyses, we use, 
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Hence, equation (7) becomes, 
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To obtain 
du

u
 exclusively in terms of 

dM

M
, we have to eliminate 

dT

T
 from equation (9), for 

which we use the energy conservation equation (i.e. the first law of thermodynamics), 
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We express (10) in differential form, 
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Above, we have use the relations p vc c R− =  and 
p
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=  to replace 
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R
 with 

1

1 −
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Substituting 
dT

T
 from equation (11) into equation (9), we get, 
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Further substituting 
du

u
 from equation (12) into equation (5), we get, 
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Equation (13) gives us the relation between the change in area and the change in Mach 

number. Based on the obtained expressions, we will consider the two cases of Mach number 

greater than 1 and Mach number less than 1 for a variable area duct. 



In figure 2, we have presented the variation of Mach number with axial distance, x , along the 

converging-diverging duct, with the profile of the duct presented above for reference. 

Looking at equation (12), we observe that 0dA=  implies 0dM = unless 1M = . Hence, for 

non-sonic ( 1M  ) velocity at the throat (throat has 0dA=  by definition), Mach number at 

the throat will also reach an extremum. We also observe that the denominator of the RHS is 

always positive (because 
p

v

c

c
 =  is always greater than 1 as pc  is always greater than vc ). 

Hence, the extremum of M  at the throat is a minimum if 1M   and a maximum if 1M  . 

 

Figure 2: Variation of Mach number with axial length in a converging-diverging duct 

We deduced above in the lecture that if sonic condition exists (i.e. Mach number is unity), 

then it must be at the throat. Hence, if Mach number is 1, it means that A is A*. Every 

compressible flow corresponds to a hypothetical reference sonic state which is designated 

using the superscript * .  

If we are solving 
dA

A
as a function of 

dM

M
, there are parametric solutions based on two Mach 

numbers. This concept will be clearer if we think of an algebraic equation (rather than the 

differential equation, equation (13) above) having A  referenced by a hypothetical sonic area 

*A , and see how it varies with Mach number.  


