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Lecture – 51 

Compressible Flows (Stagnation Properties, Variable Area) 

We briefly recap ‘Stagnation Properties’, discussed in the previous lecture. While the 

expressions for stagnation properties (pressure, temperature, density) were derived based on 

certain processes, these properties now correspond to the particular thermodynamic state of 

the gas and are independent of the process by which this state is attained. Furthermore, these 

stagnation properties are defined as the thermodynamic properties, corresponding to a 

thermodynamic state, that the gas would have if they are hypothetically brought to 

stagnation from the given thermodynamic state, and such a stagnation doesn’t have to be 

brought about in reality. Furthermore, the stagnation properties change as the gas moves from 

one state to another. 

As derived in the last lecture, the stagnation properties 
0p , 0T , 

0  are related to the current 

thermodynamic properties p , T ,   , as, 
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where, M is the Mach number and if are unique functions of Mach number.  

Now, to elucidate why the stagnation properties are being strongly emphasized, we consider 

stagnation enthalpy. If the flow is adiabatic and the change in potential energy and work done 

is negligible, the stagnation enthalpy for all points in the flow is the same, i.e., 
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Equivalent statement holds true for stagnation temperature. 

A subtle distinction occurs when extending the above discussion to stagnation pressure and 

stagnation density. Stagnation temperature is physically the temperature which can be 

attained by a fluid which is adiabatically brought to rest under no work transfer and with 

negligible changes in potential energy. On the other hand, the expressions for stagnation 

pressure and stagnation density were derived using the equation of state for an ideal gas 

undergoing reversible adiabatic process. Hence, the extra requirement of process being 

reversible comes into picture. 

Having recapitulated the concepts of stagnation properties, we now discuss an illustrative 

example problem: 

Problem: 

Consider a large tank (figure 1) which is filled with air at 30 0C. There is an exit tube attached 

to the tank from which air is exiting at 235 m/s. The tank is also equipped with a mercury 



manometer and the manometric height h is 30 m (take density of mercury as 13550 kg/m3). 

Find the temperature, pressure, and Mach number at the exit and the pressure in the tank. 

 

Figure 1: Figure for illustrative problem 

We first assess the physical scenario at hand before attempting a solution. The illustrated 

manometer indicates that the pressure is higher in the tank compared to atmosphere. The 

pressure at point P is the same as the pressure on the centerline c. And the thermodynamic 

state on centerline c is same as the thermodynamic state in the tank. Hence, the pressure at 

point P is the pressure in the tank, given as, 

tk P atm Hgp p p gh= = + .        (3) 

Since the gas well inside the tank from the exit, and hence along the line c as well, is 

stationary, tkp is same as the stagnation pressure 
0p . Here, we have made the additional 

assumptions that the tank is perfectly insulated from the surrounding, i.e. there is no heat 

exchange between tank and surrounding.  

Now if you apply the energy equation (essentially the first law of thermodynamics) between 

the tank and the exit, 
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Since 0T and exu  are known and Pc is available to us in literature as 1 kJ/kgK, we obtain 
exT as 

276 K. Now, to obtain Mach number at the exit, we have the value of exu and the sonic speed 

c is given as exRT , with 1.4 = for air. Substituting all the values, 0.706ex
ex

u
M

c
= = . 

Now, to obtain 
exp , we use the equations, 
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tk air ex Hgp hg p hg + = + .         (6) 

Equation (5) is the expression derived in the previous lecture relating stagnant pressure to 

pressure at a point in the flow. Equation (6) is simply the expression for pressure at point P 

and its counterpart on the right arm of the manometer. We note here that though 
airhg has 

been included explicitly in equation (5), it will be negligible compared to Hghg .  tkp can be 

eliminated between equations (5) and (6) and then we are left with an equation with only 

exp unknown, 
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Substituting all the values, we obtain 
exp  as 101 kPa, which is sufficiently close to 

atmospheric pressure. 

Similarly, 
exp can be eliminated between equations (5) and (6) and then we are left with an 

equation with only tkp  unknown, 
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Substituting all the values, we obtain tkp  as 140.8 kPa. 

This example problem has illustrated the relations between stagnation properties and current 

properties and their utility in the evaluation for an example problem . 

 

Compressible flow through a variable area duct: 

We will now study compressible flow through a variable area duct under one-dimensional 

analysis. This topic constitutes a fundamental cornerstone of the formalism on compressible 

flow. 

Before proceeding further, we assess the situation using the often-used equations for flow 

continuity, 
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Equation (1a) relates the average axial velocity at two cross-sections 1 and 2 whose areas are 

1A  and 
2A respectively. Equation (1b) applies to any particular point in the flow field. If the 



area of the duct is varying, we expect 
u

dx


to be non-zero and resultantly 

v

dy


to be non-zero as 

well. This indicates that solving the flow in a variable area duct using a one-dimensional 

formulation is a gross simplification and equation (1b) is more suitable. However, we observe 

here that since the flow we want to study is a compressible flow (where density varies), 

neither of equations (1a) and (1b) (which are both defined for constant density flows) is valid. 

While this does not imply that a one-dimensional analysis for compressible flow through a 

variable area duct does not amount to any simplifications of its own, it does mean that we 

cannot derive an understanding of these simplifications from equations (1a) and (1b).  

Here, we also highlight an intuitive error that many students are prone to make regarding 

flow through a variable area duct. When asked whether the average flow velocity increases or 

decreases as the duct area decreases, the common answer, based firmly on intuition as well as 

high school physics knowledge, is that flow velocity increases. This intuition is 

mathematically validated by equation (1a). However, a subtle point comes into picture here. 

While equations (1a) and (1b) are statements of volume conservation, these are simplified 

versions of the mass conservation equation (which is the physical basis) under constant 

density assumption, 

1 2 1 2 1 21 1 2 2 1 2 1 2A u A u A u A u A u A u   =  =  =      (2a) 

0

1
0 0

d

D u v u v

Dt dx dy dx dy





=

   
+ + =  + =       (2b) 

On the other hand, for a compressible flow (where density changes), all is controlled by the 

band master, density. Mathematically, this control is dictated by Mach number. If the Mach 

number is small, the intuitive answer of increasing average velocity with decreasing duct area 

is reasonably correct. But if the Mach number is not small, there will be a physical correction. 

In addition to the mathematical understanding, the physical understanding is that a situation 

where area as well as velocity is decreasing is characterised by a tremendously increasing 

density. 

We now highlight another common error. We conventionally expect an increase in flow 

speed to be associated with a decrease in flow pressure. This expectation arises out of our 

elementary mathematical study of fluid mechanics, where Bernoulli’s equation is used 

vehemently. However, Bernoulli’s equation is derived under multiple restrictions, two crucial 

ones (that are pertinent here) being flow is frictionless and density is constant. While many 

compressible flows can be appreciably close to frictionless (where we use the Euler 

equation), considering density to be constant in compressible flow is incorrect in all 

scenarios. Hence, we cannot apply Bernoulli’s equation to a compressible flow, and 

therefore, this commonly-used equation relating pressure and flow velocity is not at our 

disposal. 

So, to summarize flow through variable area duct offers us a very interesting proposition of 

fine tuning the velocity with the density variation in compressible flow. This paradigm of 

varying the flow features via density variation is not available with us for incompressible 

flows. 


