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Lecture – 50 

Compressible Flows (Stagnation Properties) 

In this lecture, we discuss some illustrative examples to better understand the concept of 

Mach number. 

Example 1: A weak pressure wave with pressure change of 40 Pa propagates through still air 

at 20 0C and 1 atm. Estimate: 

(1) density change across the wave 

(2) velocity change across the wave 

Solution: 

p = 40 Pa, T = 20 0C, p = 1 atm 

We know that velocity change is related to the pressure change through the momentum 

conservation equation, as was derived in the first lecture on compressible flows (lecture 48). 

We import the corresponding expression, 

p c u =  .          (1) 

We get  from the equation of state, 
p

RT

= as 

p

RT
 =  and we have c RT= as derived 

in the previous lecture. Hence, we now obtain u  by substituting these expressions in 

equation (1) and putting in the numerical values, giving us u as 0.097 m/s. 

Change in density,  , has similarly been derived using the mass conservation equation, as, 

u
c


 =  ,          (2) 

The numerical value obtained is 0.00034 kg/m3. This simple illustrative example requires the 

appropriate application of mass and momentum balance equations to analyze the movement 

of the pressure wave. 

Example 2: A supersonic aircraft flies horizontally at 1500 m altitude with a constant speed 

of 750 m/s. The aircraft passes directly over a stationary ground observer. How much time 

elapses after it has passed over the observer before the observer hears the aircraft? Assume: 

sonic speed is 335 m/s and the aircraft creates a small disturbance that may be treated as a 

sound wave. 

Solution: 

Importing the concept of Mach cone from the previous lecture, we see that speed of the 

source (750 m/s) is higher than speed of the disturbance (335 m/s). Thus, there exists a Mach 

cone having vertex as the aircraft and the observer will hear the aircraft, i.e. will be subject to 



the disturbance caused by the aircraft, when he/she enters the Mach cone. The observer will 

enter the Mach cone at the instance illustrated in figure 1. Examining the figure, we have, 
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Knowing c , u , and h , we obtain t as 4.006 s. 

 

Figure 1: Instance when the observer (O) hears the aircraft (A) for the first time, i.e. enters 

the Mach cone 

Stagnation Properties: 

Consider the flow of fluid through a conduit as presented in figure 2. We assume fluid 

properties are respectively uniform at the cross-sections 1 and 2. Stagnation properties are 

defined as the properties of the fluid at cross-section 2 if the fluid is hypothetically brought to 

rest at cross-section 2 in an adiabatic process. Stagnation properties serve as reference 

properties, and hence, other properties in flow can be obtained with respect to these 

stagnation properties. This helps simplify the analysis of a compressible flow problem in 

many situations. 

 

Figure 2: Section of a conduit with fluid flowing from left to right, with the control volume in 

consideration outlined using dotted line 

To ascertain the stagnation properties, we start with the mathematical expression for the first 

law of thermodynamics for a flow process through a control volume, 
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Note that in contrast to the expression for a control mass that has specific internal energy 1u  

and 2u , here we have specific enthalpy 1h  and 2h . This is the case because of the additional 

flow work that gets added when switching from a control mass approach to a control volume 

approach.  



We now assume any work done on the control volume to be negligible, i.e. 0CVW  . And 

since the process is adiabatic, 0CVQ = . Furthermore, if we consider the conduit to be 

horizontal, 1 2z z= . Thus, equation (3) simplifies to, 
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Invoking the stagnation condition at cross-section 2, 
2 0 0u u= =  and 2 0h h= , equation (4) 

becomes, 
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Written generally, i.e. in terms of any arbitrary point in flow field and not necessarily cross-

section 1, equation (5) is, 
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u
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Assuming the fluid as an ideal gas, pdh c dT= . Further assuming that the gas is calorically 

perfect, i.e. pc  remains constant and does not change with temperature, this expression can 

be integrated to get, 

0 0( )ph h c T T− = − .         (7) 

Note that for an ideal gas, pc is a function of only temperature. If pc is further constrained to 

be a constant, the ideal gas qualifies as a calorically perfect gas. 

Substituting equation (7) into equation (6), we have, 
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Here, we have used the definitions p vc c R= +  and 
p

v

c

c
=  to express pc  in terms of   and R  

as 
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.  

Similar expressions for 0p

p
and 0


exist.  



To obtain these, we utilize the equation for a reversible adiabatic process and the equation of 

state for ideal fluid, 
p

c

= (constant) and 

p
RT


= respectively. Combining these and 

equation (8), and eliminating  , we get, 
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Similarly, combining these and equation (8), and eliminating p , we get, 
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Hence, given a Mach number and given pressure, temperature and density of the fluid, the 

stagnation properties (as reference properties) can be obtained. Furthermore, if the flow 

remains isentropic, the stagnation properties do not change as other properties of the fluid 

change, meaning that the stagnation properties for a particular Mach number remain constant, 

irrespective of the flow process. 

Incompressible Flow Limit:  

We now see the stagnation properties in the incompressible flow limit. Considering the 

process by which the fluid is brought to stagnation is reversible and adiabatic, the irreversible 

effect of viscosity is not present.  

We now additionally apply the restriction of reversibility and consider the Bernoulli’s 

equation in the incompressible flow, 
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to get an incompressible flow stagnation pressure, (we have substituted 0 0u =  in the RHS). 

Proceeding further, 
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Here, we have used the equation of state for ideal gas p RT= , as well as the expression for 

sonic speed, i.e. c RT= .  

We now expect that the incompressible flow stagnation pressure 
0p  obtained as per the 

Bernoulli’s equation, as presented in equation (12) above, should match with the 

incompressible limit 
0p from equation (9). Towards this end, we express the RHS of equation 

(9) using binomial expansion and neglect higher order terms of 2M as we are considering the 

incompressible limit, for which 1M  . This yields the same expression as presented in 



equation (12). Here, we emphasize the caveat that the stagnation pressure derived in 

equations (9) and (12) are for a reversible and adiabatic process. This is in contrast to the 

expression for stagnation temperature (equation (8)) which required the process to only be 

adiabatic and not necessarily reversible. Lastly, a crucial distinction between equations (9) 

and (12) is that the ideal gas equation of state is used in deriving the former whereas 

derivation of the latter used an explicit relation between pressure and flow velocity, the 

Bernoulli’s equation.  


