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Lecture – 49 

Compressible Flow (Contd.) 

Sonic Speed: 

The effect of compressibility is quantified using the Mach number M , as discussed in the 

previous lecture. We also determined that Mach number is dependent on ‘sonic speed’, i.e. the 

speed of sound in a medium. 

We now assess the physical meaning and associations of sonic speed. Sonic speed in a medium 

was obtained in the last lecture as, 
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where c  is sonic speed, p  is pressure in the medium and   is density of the medium. More 

formally, this variation of pressure with density should be derived for a specified process. Hence, 

we typically define sonic speed c as the isentropic sonic speed sc  , which is defined as, 
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where the subscript s  implies the process is isentropic. ‘Isentropic’ process means the entropy of 

the system remains constant as the process occurs. From our understanding of thermodynamics, 

we know that a process which is reversible and adiabatic is isentropic.  

We briefly recap the definition of reversibility using an example. Consider a piston cylinder 

setup where the piston is being pulled outward. If the piston is being pulled outward at a 

sufficiently low speed such that the gas inside the cylinder is at equilibrium at any intermediate 

instant, then the process is called reversible. The slowness of pulling the piston is the 

interpretation of reversibility particular to this case, whereas, the equilibrium state of the gas in 

the cylinder at any intermediate instant is the principle of reversibility. On similar lines, if the gas 

in the cylinder is being heated across a finite temperature difference, the reversibility of the 

process gets violated and hence, the process becomes irreversible. Here, we recall that often in 

elementary physics, we identified a process that is fast enough to prohibit any heat transfer 

to/from the system as adiabatic. While such a process is adiabatic, it is not reversible. Hence, we 

summarily deduce that a system insulated from the surroundings undergoing a process that is 



sufficiently slow qualified for a ‘reversible adiabatic’ process and by extension an isentropic 

process. 

Delving into the mathematical formulation for such a process, we write the first law of 

thermodynamics, 

Q dI W q di w   = +  = + ,        (3) 

where, Q  is the heat entering the system, dI  is change is internal energy, and W  is work 

being derived from the system. It is customary to express change in internal energy with dU  and 

change in total energy (which includes kinetic, potential and internal energy) with dI . To avoid 

confusion with the flow velocity which is denoted by u  and given that we are considering a 

thermodynamic process which involves change in only internal energy with negligible change in 

kinetic and potential energy, here we use dI  to represent change in internal energy of the 

system. q , di , and w  are the per unit mass, i.e. ‘specific’ counterparts of Q , dI  and W  

respectively. 

q  is zero for an adiabatic process, w pdv =  for a reversible process due to the qausi-static 

nature of system volume change, and di = vc dT  for an ideal gas. Hence, 

0 vc dT pdv= + ,          (4) 

for the process we study here, a reversible adiabatic process. 

Here, we also observe that the definition of change in (specific) entropy ds in a reversible 

process is q Tds = , and q being zero (as is for an adiabatic process) implies ds is also zero 

given the process is reversible as well – this is the mathematical basis for the statement ‘a 

reversible adiabatic process is isentropic’. Now, we observe that for an ideal gas,  

pv RT= .           (5) 

This implies, 

pdv vdp RdT+ = .          (6) 

Equation (6) enables us to eliminate dT in equation (4), giving us, 
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In equation (7), we have made the substitution p vc c R= +  , which holds true for an ideal gas. 

Integrating, we get, 



pv k = = constant,          (8) 

where,  is the ratio /p vc c . Equation (8) derived above is the commonly-known expression for a 

reversible adiabatic process. 

Since density  and specific volume v are related as 1v = , equation (8) can also be expressed 

as, 
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Proceeding ahead with equation (9), 
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In equation (7), we have made the substitution pv RT= , which holds true for an ideal gas. 

Hence, we have obtained the expression for sc as, 
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It should be noted that this speed sc is a reference sonic speed derived for a perceived isentropic 

process. 

Physical Implications of Mach Number M : 

To illustrate the physical implications of Mach number, we consider three illustrative scenarios, 

corresponding to 1M  , 1M =  and 1M  . Let us consider a disturbance propagating in a 

stationary medium in which the source of the disturbance is moving from right to left at speed u .  

We first consider the scenario of 1M  , and take 0.5M = . This scenario is presented pictorially 

in figure 1. The source speed u is half of the disturbance propagation speed c for this scenario. In 

figure 1, we present the situation at time 3t t=  . The three fronts (from left to right) presented 

as dotted black lines correspond to the location of the pressure wave front of disturbance 

generated by the source at times 0t = , t t=  , and 2t t=  . Even the disturbance produced the 

smallest duration ago in history, i.e. at 2t t=   (just t ago than the current instance 3t t=  ) has 

proceeded beyond the current location of the source. Hence, the disturbance reaches any location 

on the path of the source prior to the source reaching that location.  



  

 

Figure 1: Scenario with 0.5 1M =  . 

We next consider the scenario of 1M = . This scenario is presented pictorially in figure 2. The 

source speed u is equal to the disturbance propagation speed c for this scenario. Similar to figure 

1, in figure 2, we present the situation at time 3t t=  . The three fronts presented as dotted black 

lines correspond to the location of the pressure wave front of disturbance generated by the source 

at times 0t = , t t=  , and 2t t=  . The disturbance produced at each of the three instances in 

history have fronts co-incident with the current location of the source. Hence, the disturbance 

reaches any location on the path of the source at the same instance as the source reaches that 

location.  

 



Figure 2: Scenario with 1M = . 

We lastly consider the scenario of 1M  , and take 2M = .  This scenario is presented pictorially 

in figure 3. The source speed u is double the disturbance propagation speed c for this scenario. 

Similar to figures 1 and 2, in figure 3, we present the situation at time 3t t=  . The three fronts 

presented as dotted black lines correspond to the location of the pressure wave front of 

disturbance generated by the source at times 0t = , t t=  , and 2t t=  . The source has crossed 

through the region of disturbance propagation corresponding to each of the three instances in 

history. Hence, the disturbance reaches any location on the path of the source after the source has 

passed through that location. Furthermore, all the fronts are such that they are tangent to the two 

dashed lines shown, which passes through the current location of the source as well. In three-

dimensional space, these lines are actually edges of a cone called the ‘Mach cone’. If we denote 

the angle either of these dashed lines makes with the horizontal by  , simple examination of 

figure 3 indicates that, 
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The region outside the cone is not subject to any disturbance whereas the region within the cone 

is. Hence, surface of this cone represents a ‘discontinuity’ of disturbance in the medium, and it 

constitutes the characteristics of the mathematical equations of flows that exhibit such 

discontinuity in the disturbance of the medium. We note here that the discontinuity arises 

because the speed of the source is comparable to the sonic speed, meaning that the disturbance 

propagates through the medium at a finite speed which gets surmounted by the speed of source. 

This becomes possible because – sonic speed is finite, which means the density changes as the 

medium undergoes some process, which can occur only when the flow is compressible. 

 



Figure 2: Scenario with 2 1M =  . 


