
Advanced Concepts In Fluid Mechanics 

Prof. Suman Chakraborty 

Department of Mechanical Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 47 

Thin Film Dynamics (Contd.) 

 

In the previous chapter we have discussed about the procedure to derive the thin film 

equation from all the boundary conditions and the governing equations under the thin 

film assumption. Now the equation that we have derived is quite an involved one and we 

need to actually appreciate the method of solving this problem. To do that we choose a 

very simple physical problem and we try to analyze the method using that. We consider 

the example of the gravitational spreading of a cylindrical drop.   

Gravitational spreading of a cylindrical drop: 
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As shown in figure 1, we have a drop (shown by the semi-circle drawn using black-

colored solid line) which has a large length perpendicular to the plane. So it is basically a 

two-dimensional description which gives a complete picture of its spreading 

phenomenon. If the drop is placed on a surface, eventually the drop will spread (the final 

shape of the drop is shown by the semi-circle drawn using blue-colored dotted line) 

because of the gravity which is acting in the downward direction. At some point of time 

the local height  ,h x t  is a function of position x and time t. After some time, we have a 

situation when the entire droplet is spread on the surface so that the maximum height is 

zero. When the maximum height is equal to zero we can say that the spreading process is 

Figure 1. Gravitational spreading of a cylindrical drop. 



complete. Here one of our interest is to determine this spreading time or in general the 

variation of h as a function of position x and time t.  

The first question arises in this context is whether this problem can be considered as a 

thin film problem or not. In the thin film problem, the basic premise is the existence of a 

small parameter 0

c

h

l
  . 

0h  is the characteristic thickness of the film or the maximum 

thickness of the film and 
cl  is the length scale along the axial (x) direction and the ratio 

  has to be small. In the present problem, when the droplet starts spreading, the 

maximum height 
0h  and the axial length scale 

cl  are comparable. Only when the 

spreading is towards the end of its journey, around that time we will have 
0h  much less 

as compared to 
cl . So we can apply the thin film theory for solving the film thickness 

only during that time. At the early stage we cannot use this thin film theory because at 

the early stage, the height of the droplet is significant as compared to its footprint. Its 

thickness becomes negligible as compared to its footprint on the surface only towards the 

end of the spreading and then only the thin film theory can be applied. 

Now we will solve the present problem from the first principles by using the set of 

equations which was reported in the earlier chapters. For the ease of understanding, these 

set of governing equations and boundary conditions are rewritten below: 

Governing equations: 

Continuity equation:                            0
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x-momentum equation:                
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y-momentum equation:                  
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where xf   and yf   are the dimensional body forces per unit volume. 

Boundary conditions: 

Tangential force balance (at the interface):    
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                                            (4) 



Normal force balance (at the interface):     
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                           (5) 

Kinematic boundary condition:       i

i
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  (‘i’ indicates interface)              (6) 

Along with that there is additional no-slip boundary condition, i.e. at 0y  , 0u  .  

Now we have to think of the simplifications that can be done for our present problem. 

Here we have the knowledge of the procedure to derive the thin film equation from the 

first principle. But one thing is missing, i.e. the knowledge of the characteristic velocity 

scale 
cu . As we have already discussed, the mathematics of the thin film dynamics 

problem is very structured. But to identify the correct physics is not so structured based 

on which only one can determine the characteristic velocity scale 
cu . However, in the 

present problem, the identification of the involving physics is quite obvious. 

First of all, in the present problem, there is no body force in the x-momentum equation 

because the entire body force is acting vertically in the downward direction because of 

the gravity. So we set the term 
2 2
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  of the x-momentum equation (2) equal to zero. 

Now, in the y-momentum equation (3), the body force term yf   will be equal to 

sing  . Since in the present problem   is equal to 90
0
,  sing   will be equal to 

g , i.e. yf g   . In the previous chapters we have discussed about the various 

possibilities of physics which can define the characteristic velocity scale 
cu . If the body 

force in the x-momentum equation 
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 is important then it will define the 

velocity scale. Similarly, if the body force in the y-momentum equation 
3 2

c
y

c

l
f

u





 
 

 
 is 

important then it will define the velocity scale. If the tangential gradient of the surface 

tension 
Ca


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 is important then it will define the velocity scale. If the Laplace 

pressure is important then the coefficient of the curvature term 
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the velocity scale. If the disjoining pressure  exp  is important then it will define the 

velocity scale.   

In our present problem, the y-momentum equation is important which is given by  

3 2

0 c

c

lp
g

y u







  


. So, 
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 is the term which will dictate the characteristic 

velocity scale 
cu . The term 

p

y
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 is of the order of 1 because it is the non-dimensionalized 

pressure gradient which is made dimensionless by using proper scales. So the term  
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competitive. So, the term 
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becomes of the order of 1 from which we get 
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. This is the first step as well as the most important step because the 

remaining part is mathematics (which contains algebra, calculus etc.). But the first step 

involves the physics of the problem and we have to be very careful about it. 

Based on this velocity scale 
3 2

~ c
c

l
u g


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
, one can estimate the Capillary number 
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  . If we divide both the numerator and the denominator by 

cl , we get 
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
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 . Now cl  is nothing but the capillary pressure and cl g  is the pressure 

due to the hydrostatic effect or the gravity. So the ratio c

c

l g

l
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
 is essentially the ratio of 

the gravity force and the surface tension force which is called as the Bond number (Bo), 

i.e. c

c

l g
Bo

l




 . Since our present problem is the gravitational spreading of drop, gravity 

is the dominating force. When gravity is the dominating force we can assume that the 

Bond number (Bo) is very large. In this context one can argue that the curvature effect is 

also important. The curvature effect is important but not at the very end stage of 

spreading. At the very beginning of spreading, the effect of curvature is very critical 



which is equally important with the gravity force; eventually the droplet flattens down 

and the curvature effect becomes less. Towards the end the curvature effect 

 cl becomes very less as compared to the gravity effect  cl g . So the regime of the 

problem where we are working, the Bond number (Bo) is essentially much larger than 1,  

i.e. Bo >> 1. It means that 
3

Ca


 is much less than 1, i.e. 
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the boundary condition where the term 
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 appears in the normal force balance 

boundary condition (5) which reads as 
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. Here, the term 
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 represents the effect of the curvature in which 
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second-order derivative and hence, it is of the order of 1.  is the non-dimensional 

surface tension which is also of the order of 1. So if we consider the condition 
3
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means the entire 
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 term (or the effect of curvature) can be neglected from the 

normal force balance boundary condition (5). Then the simplified form of the normal 

force balance boundary condition becomes 
0s exp p p   (after neglecting the curvature 

effect). Now we neglect an additional term which is the disjoining pressure term exp . 

One need to keep in mind that here we are forcefully neglecting it to simplify the algebra 

with an understanding that this is negligible to a large extent. However, this may not be 

valid under certain research problems. At the finishing stage of the droplet spreading 

process when the droplet has its footprint on the surface, then the film thickness becomes 

so thin that the Van der Waals forces can actually become very important. So, not at the 

end stage but almost at the ending of the spreading process the effect of disjoining 

pressure is important. In the present problem we are neglecting the effect of disjoining 

pressure and the normal force balance boundary condition becomes 0sp p . This is the 

first condition to be taken into account. The second condition is that in our present 

problem there is no tangential gradient of the surface tension which means the term 

Ca


  in the tangential force balance equation (4) becomes equal to zero. With these 

two considerations we will start with the y-momentum equation and integrate it over the 



film thickness. The y-momentum equation is given by 
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discussed, the term on the right hand side 
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apply the boundary condition at y h , 
sp p . Also 

sp  is equal to 
0p  from the normal 

force balance boundary condition. So we get 0 1sp p h c    , or, 
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 0p p h y   . Now we differentiate this expression of pressure with respect to x to get 
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 (since 0p  is a constant, its derivative with respect to x will be equal to zero). 
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with respect to y to get the expressions of 
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 respectively. Regarding the boundary 

conditions, we have used the considerations of the body force in the momentum 

equations as well as the tangential force balance and the normal force balance boundary 

condition. But we have not used the no-slip condition. Here, in the x-momentum 

equation, we use the two following boundary conditions: at 0y  , 0u   and at y h , 

0
u
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. Using the boundary condition at 0y  , 0u   we get 3 0c  . Using the 

boundary condition at y h , 0
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velocity distribution is given by 
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 (this is the velocity profile for the 

present problem). Our next step is to integrate the continuity equation. We integrate the 

continuity equation and then we use the Leibnitz rule. We are not going into the detail of 

the Leibnitz rule since it was already discussed earlier. Using the Leibnitz rule along 



with the kinematic boundary condition we get 
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expression in previous chapters. Substituting the expression of the velocity 
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 in the equation 
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The equation 
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 is a partial differential equation (PDE) but it can be 

transformed into an ordinary differential equation (ODE) by virtue of a transformation 

called as stretching transformation. Such a stretching transformation is available or is 

permissible if the method or the physics of the problem is self-similar with respect to 

position x and time t. In our present problem we define  h t f   where   is defined 

as 
a x

t
  . So we define the similarity variable   by combining x and t because at a 

given value of x, the height h is dependent on t. So if we freeze x and t together, we can 

come up with a unique similarity variable that can include the solution. The next part is 

the algebraic part where the objective of the aforesaid transformation is to convert the 

PDE into an ODE. If it cannot convert, then similarity solution does not exist. Now using 

the expression  h t f   we substitute it in the equation 
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 f   is a function of t implicitly because   is a function of t. Here, the derivative of  
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. In the expression 
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the first term of the equation 
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term of this equation which is 
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(here 
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substituted). Substituting the expressions of 
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Now the most important mathematical step to convert this equation into an ODE is that 

we must have only the dependent variable f  as a function of  . There should not be any 

presence of t. So, if there is no presence of t, 1   must be equal to 4 2   but it does 

not tell us any information about the parameters   and  . We have not used another 

very important physical constraint; whenever the droplet is spreading in the absence of 

evaporation the volume of the droplet is conserved. So the constraint is the volume 

conservation. If we are modeling droplet evaporation then we can put a modified volume 

constraint by taking into account the evaporation flux otherwise the volume conservation 

can be considered. The volume conservation constraint is given by 

 
 
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h x t dx c   where  L t  is the length of the footprint of the droplet 

which is a function of time t. We can scale the constant c  arbitrarily. We substitute the 



expression of  h t f   in the integral and we get  
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(here we have changed the limit from  L t  to 
0  because at  x L t , the corresponding 

value of   is equal to 
0 ). Now the integral  
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of t because the volume has to be independent of t. It means    must be equal to 

zero. As a consequence, the integral becomes 
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

  . Since these are scaled 

similarity variables we can normalize this and choose c  to be equal to 1. 0    

means we get    . We have also found earlier that 1 4 2     . Now 

substituting     here we get 1 4 2     , or, 
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5
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from the expression  h t f   we can clearly see the dependence of h  as a function of 

time t. Although we have got an information of one dependence we have not yet 

obtained the solution of the equation 
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gets simplified significantly in the form   3d
f f f f
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


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coefficients and therefore, the values of these coefficients can be chosen arbitrarily. The 

left hand side of this equation  f f   can be rewritten as    
d

f f f
d

 

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the equation becomes   3d d
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     . Now if we integrate both sides with 

respect to  , we get  3f f f k     where k is an integration constant. We need to 

apply the boundary condition to determine the constant k. At 0x   we have 0
h

x





 

because the droplet is symmetric with respect to the y-axis. It means that at 0  , 



0f    which means that k is equal to zero and we get 3 df
f f

d



  , or, 2f df d   . 

Integrating both sides we get 
3 2

2
3 2

f
k


   . So there is a requirement of the next 

boundary condition for the evaluation of k2. At 
0   which is the footprint, the height 

is equal to zero which also means that f  is equal to zero. Using the condition 0f   at 

0   we get 
2

0
2

2
k


 . So we get the solution in the form  

2 23

0

3 2

f  
 . But still we 

do not know about 
0  which now can be obtained using the constraint 

0

0
f d a



  . 

From the expression 
2 23

0

3 2

f  
  we get 

1 3
2 2

0 3
2

f
  

  
 

and we substitute it in the 

integral 
0

0
f d a



  , i.e. 
0

1 3
2 2

0

0

3
3

2 5
d

  


 
  

 
 . The integral on the left hand side 

cannot be evaluated analytically but we can evaluate it numerically. Here we have to 

apply a trick;   can be replaced as 0 sin    and then we can get the value of 0  upon 

the numerical integration since all other remaining parameters are known. From the 

numerical integration, we get the value of 0  to be equal to 2.23, i.e. 0 2.23  . Using 

the expression 
a x

t
  , we get 

 
0

a L t

t
   where 

1

5
   (since   is equal to 0  at 

 x L t ). So one we know the value of 
0 , we also know the length of the droplet  L t  

from the expression 
a x

t
   because the value of the   is already known and we have 

chosen the value of a as 
3

5
a  . So this gives the final solution of how the length of the 

droplet will evolve as a function of time t which was given an initial length.  

In this way we have come to an end of the topic thin film dynamics. The discussion of 

the last example on the thin film dynamics is quite comprehensive which gives us a 

general idea of how to solve the most general problems. All additional field effects like 

electric field, magnetic field, changing boundary condition from no-slip to slip boundary 

condition (these scenarios typically appear in the research problems) can be incorporated 

using the present common theoretical framework.  


