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Lecture - 45 

Thin Film Dynamics (Contd.) 

In this chapter we will continue with the dimensionless forms of the governing equations 

and the boundary conditions with which we concluded in the previous chapter. The 

summary of these governing equations and the boundary conditions are given below for 

ease of understanding. 

Governing equations: 

Continuity equation:                            0
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x-momentum equation:                
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y-momentum equation:                     
3 2

0 c
y

c

lp
f

y u





  


                                                    (3) 

Boundary conditions: 

Kinematic boundary condition:        i
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      (‘i’ indicates interface)         (4) 

Tangential force balance:                     
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Normal force balance:                
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There are certain important facts which need to be highlighted first. One important fact is 

that we do not have any idea about the characteristic velocity scale cu . If we do not have 

any idea about cu , then the reason is the ignorance about the physics of the problem. 

Since we have all the governing equations, if we know what is governing the physics 



then we can clearly pinpoint the characteristic velocity scale 
cu . The procedure to 

indentify the characteristic velocity scale 
cu  is illustrated below. 

When we look into the equations (1)-(6), there are certain special features in the 

governing equations and the boundary conditions. There can be several possibilities 

depending on which the characteristic velocity scale 
cu  can be decided. One possibility 

is the body force xf   dominating in the x-momentum equation; other possibility is the 

body force yf   dominating in the y-momentum equation. Besides there can be other 

possibilities; the surface tension gradient   can dominate the physics while the 

Laplace pressure (denoted by the term 
3 2

2

h

Ca x



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
) can also dominate the physics. 

Additionally, there is another possibility in which the Van der Waals force r the 

disjoining pressure (denoted by the term exp ) is the dominating physics. The 

characteristic velocity scale 
cu  depends on what is the dominating physics. Now we 

write all these possibilities in a very structured way. We will not get a possibility outside 

these even in a research problem. 

Possibilities: 

1) x-momentum body force dominating: 

For this case we look into the x-momentum equation which is given by 
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 is of the order of 1 because that is how we have 

chosen our scales. The term 
2

2
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 is also of the order of 1. So, if the body force in the x-

momentum equation is dominating, then, the term 
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 . So, if the body force in the x-momentum equation 

is dominating, the characteristic velocity scale cu  is of the order of 
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decision about the physics of the problem which mathematics cannot tell. Out of all the 



forcing parameters, we have to make a judgment from the physics of the problem that 

what is the dominating physics. So, for the body force dominating in the x-direction, 

2 2

~ c
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u f
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
 . 

2) y-momentum body force dominating: 

If the body force in the y-momentum equation is dominating, by looking into the y-

momentum equation 
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Therefore, the term 
3 2

c
y

c

l
f

u




  has to be of the order of 1 from which we get 

3 2

~ 1c
y

c

l
f

u




 , 

or, 
3 2

~ c
c y

l
u f




 . So, for the body force dominating in the y-direction, 

3 2

~ c
c y

l
u f




 . 

One should not get disturbed by looking into the order 2  and 3  terms and presuming 

that the value of the characteristic velocity scale 
cu  is less because of these terms. There 

are other multipliers like cl ,   which we do not know how small or how big they are. 

We will be absolutely confident about neglecting the order 2  and 3  terms if the 

multiplier is of the order of 1 or smaller. But here multiplier contains property (  ), 

length scale (lc) and we do not have any idea about these parameters. Therefore it is not 

legitimate to trivially rule out order 2  and order 3  terms. 

3) Surface tension gradient dominating: 

The case when the gradient of the surface tension is dominating is a typical situation 

where the physics of the flow is governed by the surface tension gradient. For this case, 

we need to look into the tangential force balance boundary condition which reads as 
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 is of the order of 1 while the term   is also of the order of 

1. To make the gradient of surface tension as the dominating physics, the term 
Ca


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to be of the order of 1, i.e. ~ 1
Ca
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. Using the definition of Capillary number (Ca) 
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discussed in the following. 

4) Laplace pressure dominating: 

For this case one need to look into the normal force balance boundary condition which 

reads as 
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. The Laplace pressure is the pressure difference due 

to the curvature of the interface. If the Laplace pressure is the dominating factor, then, of 

course, the disjoining pressure  exp  is not dominating. In the expression 
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also of the order of 1. For Laplace pressure to be the dominating factor, the term 
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5) Disjoining pressure dominating: 

The final possibility is the scenario when the disjoining pressure becomes the dominating 

factor. If the disjoining pressure  exp  in the normal force balance boundary condition 
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 is dominating, then exp  is of the order of 1. We can also 

write exp  in terms of its dimensional form as ex
ex
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  where exp   is the dimensional 

form of the disjoining pressure and cp  is the characteristic scale of pressure. So, the term 
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Very interestingly, for all these possibilities, irrespective of whichever is dominating the 

physics one can see that in the expression of the characteristic velocity scale 
cu  there is 

always either order  , order 2  or order 3  terms. So, for an untrained eye, it makes an 

elusive appearance that these terms are negligible since   is a small quantity. However 

in reality it is not true because, although   is small, we do not have any control over the 

terms like 
cl ,   etc. These multipliers can make the terms effective despite the presence 

of    (or 2 , 3 ). 

Therefore, to solve a problem, we have to decide that out of these five cases which one 

will be relevant for our specific problem. We cannot just train this thing by mathematics 

but it should come from our physical understanding of the problem. Of course we will 

work out a problem later on but at this stage we should keep in mind that we cannot 

really go ahead in solving a problem until and unless we pinpoint the dominating force 

that governs the physics of the problem. Now there can be a critical situation when more 

than one force or even all five forces are of equal strengths. Under such circumstances, if 

more than one force is of equal strength, we can choose any one of them to ascertain the 

characteristic velocity scale. If two or more forces are of the same order, we can decide 

the velocity scale based on one of the forces and it will automatically take care of the 

other forces as well. 

Overall, we have not really advanced in the context of solving the thin film problem. We 

do not want to just represent the governing equations (1)-(6). We need to remember the 

physical problem with which we started. This problem consists of a surface on which 

there is an undulated thin film of liquid. Our objective is to see that how the film 

thickness  ,h x t  evolves as a function of x and t. In order to know the film thickness 

 ,h x t  as a function of x and t, we have to solve the governing equations along with the 

boundary conditions described by equations (1)-(6). Now we will proceed towards the 

solution strategy for the thin film problem. 

Solution strategy for the thin film problem: 

We will start with the y-momentum equation which reads as 
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. Since it is 

the simplest governing equation, it is easy to deal with. Integrating this y-momentum 



equation 
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 with respect to y, we get 
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have the partial derivative 
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function of x and t, we define this constant as  1 ,C x t . So, the pressure distribution (p) is  

given by  
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  . So we have three variables x, y and t respectively. To 

evaluate  1 ,C x t  we need to apply the boundary condition. At  ,y h x t , the pressure 

p  is equal to sp  which is the pressure in the liquid side of the free surface. Using this 

boundary condition we get  
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Substituting this expression of  1 ,C x t  in the pressure distribution we get the final form 

of the pressure distribution  

                                                     
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So we have taken care of the y-momentum equation part through finding the pressure 

distribution p. Before looking into the x-momentum equation, we use the normal force 

balance boundary condition 
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 to get an expression for sp  (the 

pressure at the surface) which is given by 
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expression of sp  in equation (7), we get  
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 which 

is the final expression of the pressure distribution. 

Now we will discuss something which is very interesting. From the beginning of this 

topic we are trying to draw an analogy between the thin film theory and the boundary 

layer theory. We have seen that there is a remarkable difference in the physics of these 

two theories. In case of boundary layer theory, we are normally working with high 

Reynolds number flow. But in case of thin film theory, we are normally working with 

low Reynolds number flow. However, there is a remarkable similarity which is the 

separation of the length scales. There is a length scale in the transverse direction which is 

very less as compared to the length scale in the longitudinal direction and it is the scale 



ratio (the small quantity) which matters in our calculations. Now the question arises that 

if the two theories are so similar then whether there is any other striking dissimilarity 

between the two theories or not. The striking dissimilarity is the implication of the y-

momentum equation. In the boundary layer theory, the y-momentum equation has its 

implication that the pressure gradient along the y-direction is equal to zero, i.e. 0
p

y





. It 

means that within the boundary layer, there is no pressure gradient across the boundary 

layer and all the pressure gradient is imposed from the free stream outside the boundary 

layer. But in the thin film theory, the pressure gradient within the film is very important. 

The reason is the pressure variation  
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 within the 

film is a strong function of h and that dictates the evolution of the thin film. This 

expression of the pressure distribution is now required in the x-momentum equation (2) 

which reads as 
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. We define a function  ,A x t  (i.e. function of both x and t) to 

be equal to 
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writing A  as a function of x and t is that with respect to the y-derivative it can be treated 

as a constant. Using this form of  ,A x t  in the x-momentum equation we get 

 
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To evaluate  2 ,C x t , we will use the tangential force balance boundary condition (5) 

which reads as 
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. We have to keep in mind that all the three boundary 

conditions, namely tangential force balance; normal force balance and kinematic 

boundary condition are applicable at the interface, i.e. at  ,y h x t . Since we are doing 

a general formulation big expressions/terms are appearing but if we solve a specific 

problem then many of these terms will not be there. So, using the tangential force 



balance boundary condition 
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velocity distribution  
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 where  3 ,C x t  is the 

integration constant. Now  3 ,C x t  can be easily calculated by using the no-slip 

boundary condition at 0y  . If we have a slip boundary condition (in this context one 

can think of a microfluidic or a nanofluidic problem with slip), then we have to simply 

introduce the slip boundary condition at 0y   to accommodate the slip at the wall.  

We have not written this no-slip boundary condition at 0y   earlier. So, this boundary 

condition is written as at 0y  , 0u  . Additionally, at 0y  , we also have 0v   which 

is known as the no-penetration boundary condition. The earlier boundary conditions (i.e. 

the tangential force balance; normal force balance and kinematic boundary condition) are 

at the fluid-gas interface, so there should also be boundary condition at the wall. The no-

slip and no-penetration boundary conditions are applicable at the wall. Since these 

boundary conditions are very obvious we have not written these conditions earlier. 

Despite being very obvious, sometimes the no-slip boundary condition is violated. 

However, the no-penetration boundary condition will never be violated.  

So, the boundary conditions at 0y  , 0u   and 0v   should be included in the set of 

boundary conditions that was written earlier (such that it will become a complete set of 

boundary conditions). Using the condition 0u   at 0y   we get 3 0C  . We have got 

the final form of the velocity distribution 
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. So we have overcome 



one of the major challenges, i.e. we have got the velocity profile in the film. We have to 

keep a note about the expressions of the two terms A  and 
2C  since they are required in 

the final expression of the velocity distribution. In the expression of A, there is another 

parameter 
sp  which is defined as 

3 2

0 2s ex

h
p p p

Ca x





  


. This completes the 

description of u as a function of x and t. But it does not tell us about how h evolves as a 

function of x and t. So we have to somehow use the remaining resources. Therefore 

question arises about the remaining resources. We have not used the continuity equation 

and we have not used the kinematic boundary condition. Kinematic boundary condition 

needs to be applied at the interface as well as at the solid boundary which is known as 

the no-penetration boundary condition. So we have not used these boundary conditions 

and the continuity equation till now. In the next chapter we will use these conditions 

along with the derived velocity profile to get the governing equation for the film 

thickness. 

 


