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Lecture – 44 

Thin Film Dynamics (Contd.) 

In the previous chapter, we have discussed about the tangential force balance. In the 

present chapter, we will focus on the normal force balance. We have already discussed 

about the normal force balance but here our objective is to write the normal force balance 

in a dimensionless form. 

To do this, we first write the normal force balance in the dimensional form which is 

given by  

                                              0
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First we explain the physical meanings of individual terms of this equation. Here, sp   is 

the pressure at the interface, 0p   is the outside pressure; ˆT n   is the viscous normal 

stress (which is only the viscous component of the stress tensor). A negative sign is 

given before the viscous normal stress because pressure by definition is compressive 

while stress by definition is tensile. 
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 in the present scenario. exp   is 

the disjoining pressure due to Van der Waals forces of interaction if the film thickness 

becomes very less. Now we will write the expressions of the individual terms of equation 

(1) out of which the major activity will be to expand the viscous normal stress term 

ˆT n  . In the previous chapter we have written the expression of T  which is given by 
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. We have to use this 

expression of the traction vector T  in the dot product of T  with the unit normal vector 

n̂ . The unit vector n̂  is given by ˆ ˆˆ
x yn n i n j   and therefore, the dot product becomes 
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Now we write the orders of the various terms instead of further simplification because 

from it we will have an explicit inference.
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. So, 2

xn  is of the 

order of 2 . So in the term 2

xn , one 2  term will appear. In the term x yn n , one   will 

appear. Although the other term 
2

yn  is equal to 1, it is multiplied by the term cv  which 

itself contains one   term because cv  is of the order of cu . We should replace all cv  

terms by 
cu . Substituting the orders of magnitudes of the different terms we get, 
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the right hand side of this expression 
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is of the order of  . So, overall, one can 

argue that all these terms are either of the order of   or even less and therefore, in the 

leading order the viscous normal stress will not matter. This is a very important 

conclusion. So when we work out the term ˆT n  , we will get term either of the order 

of  or of the order which is even smaller than  . This makes the term ˆT n   negligible 



in the leading order as compared to the terms sp   and 0p   which are of the order of 1. 

Very commonly in fluid dynamics problem we can see that when people write the 

normal stress balance at the interface, many times people do not write the viscous normal 

stress at all. Irrespective of whether it is a purposeful mistake or a mistake without a 

purpose, eventually that mistake will not matter because at the leading order we will find 

that the viscous normal stress will not have a role to play for writing the boundary 

condition for thin film equations. This is justified by the order of magnitude analysis of 

the viscous normal stress term. So, form now onwards, we will not consider the term 

ˆT n   in the analysis. We need to remember that when we learn a subject, it is very 

important to know what is fundamentally correct. The presence of the term ˆT n   in the 

normal stress balance equation  0
ˆTs exp p n p
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 is fundamentally correct. 

But when we incorporate the necessary assumptions, we have found that the term ˆT n   

turns out to be not as dominant as compared to the other terms. So we have to keep in 

mind this aspect and ˆT n   is not exactly equal to zero. With this understanding, we write 

the normal stress balance equation as 0s exp p p
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. The only thing that needs to 

be calculated is the term 
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 before we can proceed further. From co-ordinate geometry, 
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unit normal vector n̂  which establishes a relationship between 
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 and n̂  (from vector 

analysis with co-ordinate geometry we get this in elementary mathematics course). Now 

we evaluate the expression n̂   using the definition of the divergence operator   and 

the expression of the unit vector n̂ , i.e. 
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Now we will write the dimensional stress balance equation 0s exp p p
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 in the 

corresponding non-dimensional form. sp   can be written as s s cp p p   where 
cp  is the 

characteristic pressure which is related to the characteristic velocity 
cu . 0p   can be 

written as 0 0 cp p p  ;   can be written as 
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to write the normal stress balance equation in the dimensionless 

form
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which its dimensional form exp   can be written in terms of the film thickness as 
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 where A  is called as the Hamaker constant. This Hamaker constant 

indicates the strength of the Van der Waals force. We can clearly see that as the film 

thickness becomes smaller and smaller, exp   becomes very large and it can dominate 

over all other terms. So, exp  is a non-dimensional representation of exp  . Now we 

substitute the relationship between cp  and cu , i.e. 
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equal to  , so one   term gets cancelled from the numerator and the denominator and 

the resulting expression of the stress balance equation becomes  
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one question may arise about the presence of the 
3  term on the right hand side of the 

normal stress balance equation since we have neglected earlier   and 
2  terms in the 



derivation. In the term 
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another term Ca (i.e. the Capillary number). Therefore, the strength of the term  
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of Capillary number). If the Capillary number is very large, then 
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magnitudes of the multipliers were known to us and therefore, we neglected the order   

and the order 
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So, overall, we have got all the governing equations and the boundary conditions in a 

non-dimensional form. We will now write a summary of all the governing equations and 

the boundary conditions in a non-dimensional form such that it will be easier to follow. 

Summary of governing equations and boundary conditions in dimensionless form: 

Continuity equation:                            0
u v
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x-momentum equation:                
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y-momentum equation:                   
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These three equations (2)-(4) are the governing equations in the dimensionless form. 

Now we will write the three boundary conditions.  



Kinematic boundary condition:        i
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      (‘i’ indicates interface)         (5) 

Tangential force balance:                     
u

y Ca





 


                                                       (6) 

Normal force balance:                
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In these equations (2)-(7), we do not really care about the derivative terms because the 

derivative terms are already constrained to be of the order of 1. Except for the derivative 

terms everything else will decide the characteristic velocity scale 
cu  and the 

characteristic pressure scale 
cp . We can ascertain the characteristic velocity scale by 

looking into the governing equations and appealing to the physics of the problem which 

will be discussed in the next chapter. 

 


