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Lecture - 43 

Thin Film Dynamics (Contd.) 

 

In the earlier chapters we have discussed about the thin film dynamics and in the context 

of thin film dynamics we have discussed about the simplified governing equations in the 

non-dimensional form. We have also started looking into the simplified boundary 

conditions and the first boundary condition, i.e. the kinematic boundary condition in the 

non-dimensional form was discussed in the previous chapter. The next logical extension 

of this will be to look into the tangential force balance and the normal force balance in 

the non-dimensional form.  

First we will write the tangential force balance in the dimensional form and then we will 

convert it in the non-dimensional form. The tangential force balance in the dimensional 

form is given by  ˆ ˆT ss s     . Now we will write an expression for the vector ŝ . To 

do that first we need to known about the vector n̂ . This n̂  vector we have already 

written implicitly in terms of the function F . We recall the definition of the function F  

which is given by  ,F y h x t       where h  is a function of both x  and t  . Now we 

calculate the gradient of the function F  which results ˆ ˆF F
F i j

x y

  
  

  
. Question 

may arise about why the calculation of gradient of the function F  in the context of the 

vectors ŝ  and n̂ . F   is calculated in the context of n̂  because by definition, the 

gradient of a function is a vector which is normal to the graphical representation of the 

function. So, if F  is a function, the gradient of F  is a vector which is normal to the 

function F  drawn in a suitable plane. So, F   will be in the direction of the vector n̂ . 

The form of gradient F   is rewritten as ˆ ˆ ˆ ˆF F h
F i j i j

x y x

    
     

    
. Then we 

write the expression of F   in terms of the corresponding dimensionless parameters. h  

has a characteristic dimension 0h  and x  has a characteristic dimension cl . Using this, 

F   can be rewritten as 0ˆ ˆ

c

h h
F i j

l x


   


; using 0

c

h

l
  , F   becomes 



ˆ ˆh
F i j

x



   


. Using this express of F  , one can obtain the expression of the unit 

normal vector n̂ . By definite, the unit normal vector n̂  is related to F   as ˆ
F

n
F





.  

So, n̂  is the unit vector in the direction of the gradient F   which is also in the direction 

normal to the interface. The function F  is along the interface, so the gradient of the 

function F   is normal to the interface and therefore, n̂  is normal to the interface. Using 

the expression ˆ ˆh
F i j

x



   


, one can tell that that the modulus F  will be equal 

to 

2

2 1
h

x


 
 

 
. Using this, the expression of n̂  becomes 

2

2

ˆ ˆ

ˆ

1

h
i j

F xn
F h

x






 

  
  

 
 

. 

Clearly, at the leading order, the denominator will be equal to 0. We are writing 

everything in terms of the leading order, so, at the leading order,  
2

2

ˆ ˆ

ˆ

1

h
i j

xn
h

x






 


 

 
 

 is 

as good as ˆ ˆˆ
h

n i j
x




  


.  

x

y

ŝ
n̂

090 

 

 

 

 

Now to obtain the unit vector ŝ , we draw a curve as shown in figure 1. The unit vector ŝ  

is acting along the tangent to the curve and the unit vector n̂  is acting normal to the 

curve. The angle between ŝ  and n̂  is equal to 90
0
. Since ŝ  is a unit vector, its length is 

equal to 1. The corresponding x-direction and y-directions are shown in the figure.   is 

the angle between the vector ŝ  and the x-direction while the angle between the negative 

Figure 1 shows a curve where the unit vector ŝ  is acting along the tangent to the curve. 

The unit vector n̂  is acting normal to the curve. The angle between ŝ  and n̂  is 90
0
.  



x-direction and the vector n̂  is equal to 
090  . Resolving the unit vector ŝ  along the x-

direction and y-direction we can write ˆ ˆˆ cos sins i j   . In the similar way, the unit 

vector n̂  can be resolved as    0 0ˆ ˆ ˆ ˆˆ cos 90 sin 90 sin cosn i j i j           . 

Comparing this form of ˆ ˆˆ sin cosn i j     with the form ˆ ˆˆ
h

n i j
x




  


, we get 

sin
h

x
 





 and cos 1  . So the unit vector ŝ  is given by 

ˆ ˆ ˆ ˆˆ cos sin
h

s i j i j
x

  


   


. So, after some exercise, we have obtained the expressions 

of the unit vectors ŝ  and n̂ . This is very important because the knowledge of ŝ  and n̂  is 

necessary in evaluating the dot products in the expression  ˆ ˆT ss s     . Our next 

endeavor is to calculate these dot products. To know about the traction vector T , we 

need to remember the Cauchy’s theorem, i.e. Tn

i i j jn . We will apply the Cauchy’s 

theorem; but in a two-dimensional framework. Apply Cauchy’s theorem we get,  

T =
xx xy x

y
xy yy

n

n

 

 

    
   
     

 where sinxn    and cosyn  . So, the product (i.e. the matrix 

multiplication) will be a vector with two components, i.e.  

ˆ ˆT xx x xy y xy x yy yn n i n n j             
   

 where xx x xy yn n    is the x-component of 

the vector and xy x yy yn n    is the y-component of the vector. Before just blindly 

writing individual terms we can clearly assess the terms and compare the relative 

strengths of the terms. The expressions of xx  , xy   and yy   are given by 2xx

u

x
 

 


, 

xy

u v

y x
 

         
 and 2yy

v

y
 

 

. In the expression of T , xx   is multiplied by the 

term xn . Now, xn  by definition is equal to sinx

h
n

x
 


   


 while yn  is equal to 1. 

So, if we multiply xx   with xn , the term 
h

x






 is already of the order of ~  .  But we 

cannot conclude about the term xx   because to conclude about this, we have to transfer 

the dimensional form into non-dimensional form. Then we can see the order of this term. 



Using the order of magnitude analysis, we can write 2 c
xx

c

u u

l x




 


, 

0

c c
xy

c

u vu v

h y l x
 

     
  

 and 
0

2 c
yy

v v

h y
 

 


. So, clearly, all these three terms have a  

coefficient which is a ratio of some velocity by some length. We do not exactly know 

about the coefficients but one thing we definitely know that 
cv  is of the order of 

cu . 

Now we look into all the multipliers 
xx x xy yn n    and 

xy x yy yn n   . We do not write 

all these multiplications in detail, but by observing we can see which term is important 

and which term is not important. First we consider the multiplication of xx   with 
xn . So, 

when xx   is multiplied with xn , there is one  O   term and on top of that there is some 

multiplier. When xy   is multiplied with yn , in the expression 
0

c c
xy

c

u vu v

h y l x
 

     
  

, 

the term c

c

v

l
 is of the order of   and yn  is equal to 1. But the term 

0

cu

h
 is clearly not of 

the order of  . It is the ratio of a velocity scale and a small length scale; cu  is the 

dominant velocity scale and 0h  is the smaller length scale. If we compare the term 
0

cu

h
 

with the term c c

c c

v u

l l


 ; out of 

0h  and 
cl , 

0h  is smaller. So the term 
0

cu

h
 will clearly 

dominate the term c c

c c

v u

l l


  because 

0

cu

h
 will be greater than c

c

u

l
 and a multiplication 

with the small quantity   makes it further less. So, the term 
0

cu u

h y





 will clearly 

dominate. When we multiply the term xy   with xn , x

h
n

x



 


 is already of the order of 

 . So, whatever be the order of 
0

c c
xy

c

u vu v

h y l x
 

     
  

, when we multiply it with xn , it 

will be of the order of  ; so, the term xy xn   will be less as compared to the term xy yn  . 

In the expression of 
0 0

2 2c c
yy

v uv v

h y h y


  

   
 

 we can clearly see an order   term. So, 

out of the four terms xx xn  , xy yn  , xy xn   and yy yn  , except for the term xy yn   the 



other three terms are either of the order of   or 2 . So, the term 
xy yn   is therefore the 

leading order term. So in the leading order 
0

ˆT = cu u
i

h y






. We have to make a dot product  

of the traction vector T  with the unit vector ŝ . When we make the dot product, ˆT s    

results 
0 0

ˆ ˆ ˆˆT c cu uu h u
s i i j

h y x h y
  
    

       
    

 ( ˆ ˆi i  becomes equal to 1 and ĵ  does 

not feature). We have done this derivation rigorously but we can also do it from an 

intuition. Since ˆT s   is the tangential stress it should in the form similar to 
du

dy
 . Now 

question may arise about the term 
du

dy
 because we have now assumed the interface to be 

curved instead of a flat interface. However, although the interface is curved, in the 

leading order the deviation from its flatness is not that significant and therefore, in the 

leading order, it is effectively like 
du

dy
 . 

Next we will calculate the right hand side of the tangential force balance equation 

 ˆ ˆT ss s     . The expression of the surface gradient operator s
  is given by 

 ˆ ˆ
s n n      . First of all, we will operate s    on the unit vector ŝ . This dot 

product   ˆ
s s    is as good as  ˆ

ss    . Using the form  ˆ ˆ
s n n      , when 

we use the dot product of ŝ  with s   , for the first term   it will be ˆ
ss   while the 

dot product for the second term  ˆ ˆn n   will be equal to zero because the unit vectors 

n̂  and ŝ  are orthogonal to each other. These unit vectors are perpendicular to each other 

according to the way they are defined. So,  ˆ
ss     will boil down to  ŝ   . So, 

out of  ˆ ˆ
s n n      , we have only retained the term  because ˆ ˆn s  is equal to 

zero and we eventually get    ˆ ˆ
ss s        . So, 

  ˆ ˆ ˆ ˆˆ
h

s i j i j
x x y

  
     

                 
.   can be written as 0    where 0  

is the reference surface tension coefficient. So, 0  is the dimensional reference surface 



tension and therefore,   is the non-dimensional surface tension. In this way we are 

transforming a dimensional surface tension   to a non-dimensional surface tension   

via the reference 
0 . So we get   0

ˆ ˆ ˆ ˆˆ
h

s i j i j
x x y

  
     

                
  where  

the dot product  ˆ ˆ ˆ ˆh
i j i j

x x y


    
           

 is simplified to the form 
h

x y x


   
     

. 

So we get the final form of  ŝ    as   0
ˆ

h
s

x y x
   

   
        

. Now x  can 

be written as cx x l   and y  can be written as 
0y y h  . Using these expressions of x  

and y  in the form of  ŝ   ,  we can write 

0 0 0

0

1 1

c c

h h h

x y x l x h y x l x y x


   

            
                     

 where we have 

used the definition 0

c

h

l
  . Now we define a new operator   as 

h

x y x

   
   

   
 

which is operating on the surface tension   and we get   0ˆ
c

s
l


     . Now we 

equate the expression of ˆT s   and  ŝ    which reads as 0

0

c

c

u u

h y l


 


 


. We 

divide both sides of this equation by 
0

cu

h
  to get 0 0 0

c c c

hu

y u l u

 
  

 


   


. This 

0

cu


 is a very important non-dimensional parameter. 

0

cu


 can be written as 

0

0
0

0

c

c

u
A

u h

A

h





 

  where 
0

cu

h


 is the shear stress and when it is multiplied by the area A it 

represents the viscous force. In the denominator, 
0

A

h
 is a characteristic length. So in the 

denominator there is surface tension coefficient multiplied by the characteristic length 

which represents the surface tension force. So 
0

viscousforce

surface tension force
cu


 , which is 

called as the Capillary number (Ca) representing the ratio of the viscous force and the 

surface tension force. 



Overall, we arrive at the final non-dimensional form of the tangential force balance 

boundary condition. In the next chapter we will discuss about the procedure to write the 

normal force balance boundary condition in the dimensionless form. 

 


