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Lecture - 42 

Thin Film Dynamics (Contd.) 

 

In the previous chapter, we have discussed about the thin film boundary conditions at the 

interface in terms of the tangential force balance and the normal force balance. We have 

not discussed about the kinematics constraints at the interface. These kinematic 

constraints will be reflected through a boundary condition called as kinematic boundary 

condition. The initial form of the interface is shown in figure 1(i) at a certain time and 

then after some time the interface evolves like what is drawn in figure 1(ii). We have to 

decide that what remains unaltered when we move from the first configuration to the 

second configuration. 
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Let us assume that at a given x , the interface thickness is  ,h x t  . After sometime, at 

the same x ,  ,h x t   becomes different. This is a combined spatiotemporal change in 

the film thickness. Over a period of time, the interface topology changes altogether and 

that makes h  a variable which not only is a function of x  because of the variation 

along the x -direction but h  itself becomes a function of time. That makes h  a 

combined function of position and time. To assess the combined function of position and 

time, we define a function F  as  , tF y h x      . So, clearly, if the interface is flat, at 

the interface y  and  , th x    are equal to each other. So, if we are located at the 

Figure 1(i) shows the initial configuration of the interface which after some time 

takes the configuration of what is drawn in figure 1(ii). 



interface, for a flat interface  , ty h x    . If we are located on the interface where 

h dynamically evolves we can say that the absolute location will change. But what will 

happen is if there is a particle located on the interface, the particle will still be located on 

the interface forever. It may go to a different position but if it is located at the interface, 

it will be constrained to be located at the interface forever. This of course gets violated if 

there is an exchange of mass between the two phases. But that is not the case what we 

are considering here. So, if we are not considering that particular case, then it says that if 

a particle is located on the interface it will be located on the interface forever. This is the 

physics of the kinematic boundary condition. That we can write equivalently as 0
DF

Dt





 

which means that the total derivative of the function F  is equal to zero. We can expand 

the total derivative 
DF

Dt




 in terms of the unsteady term 

F

t




 and the advective 

termV F   and we can write 0
F

V F
t


   


. Now we determine the individual 

terms of the constraint 0
F

V F
t


   


. Using the expression  , tF y h x      , we 

can write 
F h

t t

  
 

  
, the vector V   can be written as ˆ ˆV u i v j     where î  and ĵ  are 

the unit vectors along the x
/
-direction and the y

/
-direction. The gradient of the function 

F  becomes ˆ ˆ ˆ ˆF F h
F i j i j

x y x

    
     

    
. Using the expressions of V   and F   we 

get  ˆ ˆ ˆ ˆh h
V F u i v j i j u v

x x

   
                 

. This expression of V F   along 

with 
F h

t t

  
 

  
 will lead to 0

h h
u v

t x

  
    

  
, or, 

h h
v u

t x

  
  

  
. So, 

h h
v u

t x

  
  

  
 is the constraint that must be satisfied at the interface. This boundary 

condition must be satisfied at the interface. Let us take an example of the kinematic 

boundary condition. Let us consider that we have a rigid interface as the bottom wall. If 

we have a rigid interface as the bottom wall, F y   because h  is equal to zero. Now 

we look into the constraint 
h h

v u
t x

  
  

  
. In the present example, 

h

t




 is equal to zero 

because h  itself is equal to zero. In the other term 
h

u
x





, first of all 

h

x




 is equal to zero 



and on the top that u  is also equal to zero because of the no-slip boundary condition. So 

the constraint 
h h

v u
t x

  
  

  
 gets simplified to the form 0v  . This is known as the 

no-penetration boundary condition. So the no-penetration boundary condition can be 

perceived as a special case of the kinematic boundary condition. It is not anything 

different; it is just a special case of the kinematic boundary condition. It tells that if a 

particle is located on the wall, it will be located on the wall forever because it cannot 

penetrate through the wall.  

Let us now assess the things what we have learnt so far in the context of thin film 

dynamics. We have learnt about how to write the simplified form of the governing 

continuity and momentum equations. We have also learnt about the force balance 

equations as well as the kinematic boundary condition. We arrive at a pressure scale 

which is the function of the velocity scale. But we do not yet know about the velocity 

scale. So the key question arises about this velocity scale. To understand the velocity 

scale we should ideally non-dimensionalize all the governing equations, not only the 

governing equations but also the boundary conditions. Then we must figure out the 

physical force that is dominating. It can exist either in the governing equations or in the 

boundary conditions. Form that, we can figure out the velocity scale. So to figure out the 

velocity scale we need to have either a scaling analysis or a non-dimensionalization. 

Non-dimensionalization appears to be algebraically a little bit more convenient because 

we can use the non-dimensional equations further to solve for the film thickness. 

Now we concentrate on the non-dimensionalization of the thin film equations and the 

boundary conditions. To do that, we should start with the continuity equation 

0
u v

x y

  
 
  

. The length scale of the problem is cl , so, x  is of the order of ~ cl . y  is 

of the order of ~ 0h ; u  is of the order of ~ cu  and p  is of the order of ~ cp . The scale 

cp  can be obtained from the momentum equation which tells that 
2 2

0

c c c
c

c

u l u
p

h l

 


  , 

so, p~
2

c

c

u

l




. Not only y  is of the order of ~ 0h  but also h  is of the order of ~ 0h ;   is 

of the order of ~ 0 . Additionally, of course, we have the disjoining pressure term but it 

involves its own variables. Now we will convert the dimensional variables into 



dimensionless variables using these scales. We define, 
c

x
x

l


 , 

0

y
y

h


 , 

0

h
h

h


 , 

c

u
u

u


 , 

c

p
p

p


   and 

0







 .  We have missed the order of magnitude for the v  component 

which is of the order ~ 
cv . Using the continuity equation, 

cv  becomes equal to 
cu ; so, 

v  becomes of the order of ~
cu . We define, 

c c

v v
v

v u

 
   where 0

c

h

l
  . Using these 

dimensionless variables we will write the governing equations and the boundary 

conditions. To do this, there is a simple way and there is a little bit more methodical but 

time consuming way. The time consuming way is that we can write the derivative 
u

x




 as 

u u u x

x u x x

    


    
using the chain rule of differentiation. Using the orders of magnitudes 

stated before, 
u

u




 is equal to 

cu  and 
x

x




 is equal to 

1

cl
, so the dimensionless from of  

u

x




 becomes c

c

u u

l x




. Simple way is that, 

u

x




 can be non-dimensionalized by 

multiplying velocity scale cu  in the numerator and length scale cl  in the denominator. 

Using the dimensional forms of the variables and some algebraic rearrangement, we will 

get the same dimensionless form c

c

u u

l x




. In the similar way, the dimensionless form of 

the term 
v

y




 is given by 

0

cv v

h y




. Now we have already seen from the order of magnitude 

analysis that 
0

c c

c

u v

l h
  because cv  is defined as 0

c c c

c

h
v u u

l
  . Using this, the 

dimensionless form of the continuity equation becomes 0c c

c c

u uu v

l x l y

 
 

 
 or, 

0
u v

x y

 
 

 
. So, the dimensional and the non-dimensional continuity equations are in 

the same form. Next we will consider the x
/
-momentum equation. 

x
/
-momentum equation:           

2

2
0 sin

p u
g

x y
  

  
   

  
                                           (1) 



By following the same style that was done for the continuity equation, the dimensionless 

form of the x
/
-momentum equation is given by  

           
2

2 2

0

0 sinc c

c

p up u
g

l x h y


 

 
   

 
                                    (2) 

When we write sing   as a body force in the x
/
-momentum equation, it becomes a little 

bit restrictive because we are considering gravity as the only body force. So instead of 

that we write a general body force xf   which can be gravity or something else. In the 

body force, we can have electric field, magnetic field or so many other effects. So, if we 

write a general formulation for xf   we can use that formulation also for solving our 

specific problem. So, the dimensionless form of the x
/
-momentum equation is rewritten 

as 
2

2 2

0

0 c c
x

c

p up u
f

l x h y

     
 

. Using the order of magnitude analysis stated previously, 

c

c

p

l
 is equal to 

2

0

cu

h


. Actually by equating the expressions c

c

p

l
 and 

2

0

cu

h


, the 

relationship between cp  and cu  was established. So, 
2

0

c c

c

p u

l h


  and therefore, 

2

2
0 c c

x

c c

p pp u
f

l x l y

     
 

. We multiply both sides of this dimensionless momentum 

equation by c

c

l

p
 and the momentum equation becomes 

2

2
0 c

x

c

lp u
f

x y p

     
 

. Now we 

substitute the expression of cp  here, i.e. 
2

c
c

c

u
p

l




   and the final form of the momentum 

equation becomes   

                                                
2 22

2
0 c

x

c

lp u
f

x y u





     
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                                                 (3) 

If   is equal to zero and there is no other body force, then the term 
2 2

c
x

c

l
f

u




  will be 

equal to zero and the x-momentum equation will be 
2

2
0

p u

x y

 
  

 
. Now we focus on 

the y
/
-momentum equation. The dimensional form of the y

/
-momentum equation is given 

below 



y
/
-momentum equation:                  0 cos

p
g

y
 


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
                                                 (4) 

Here also we can write the body force term cosg   (the gravity force) in a general 

form 
yf   and the y

/
-momentum equation can be rewritten as 0 y

p
f

y

   


. Now we 

non-dimensionalize this momentum equation and the dimensionless form of this 

momentum equation becomes  

                                                            
0

0 c
y

p p
f

h y

   


                                                   (5) 

We multiply both sides of equation (5) by 0

c

h

p
 and it becomes 00 y

c

hp
f

y p
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

. Using the 

expression of 
2

c
c

c

u
p

l




 , we get 

2 3 2

0 c c c

c c c

h l l l

p u u

  

 
  . Using this, the final form of the y-

momentum equation is given by 
3 2

0 c
y

c

lp
f

y u





  


. Regarding the body force terms, we 

should note that in many of the scenarios, the body forces along the x-direction and the y-

direction govern the physics of the problem (perhaps in most of the practical scenarios 

either body force along the x-direction or body force along the y-direction is present). In 

order to see the importance of body force term, we need to look into the momentum 

equation  
3 2

0 c
y

c

lp
f

y u




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

 where the term 
p

y




 is already of the order of 1 because 

pressure (p) is normalized with respect to its characteristic scale and y is normalized with 

respect to its characteristic scale. If 
p

y




 is of the order of 1, in order to satisfy the 

equation 
3 2

0 c
y

c

lp
f

y u




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

,  the term 
3 2

c
y

c

l
f

u




  has to be of the order of 1. So, 

3 2

c
y

c

l
f

u




 ~ 

O(1) from which one can get the velocity scale cu . In this way, depending on the physics 

of problem one can actually arrive at the relevant velocity scale for the problem. So we 

have arrived at the various governing equations. Regarding the boundary conditions, we 

first consider the simplest one to algebraically deal which is the kinematic boundary 

condition. 



The kinematic boundary condition tells that at the interface, '
h h

v u
t x

  
 

  
. Using the 

non-dimensionalization scheme described earlier, we can write the kinematic boundary 

condition as 0 0
c c

c c

h hh h
vv u

t t l x

 
 

 
. The time scale 

ct  is given by c
c

c

l
t

u
 . Substituting 

this expression of 
ct  we get 0 0

c c c

c c

h hh h
vv u u

l t l x

 
 

 
. The velocity scale 

cv  is given by 

c cv u  where 0

c

h

l
  . Using this expression of 

cv  and the definition of  , the modified 

form of the kinematic boundary condition becomes c c c

h h
v u u u

t x
  

 
 

 
. So, cu  

gets cancelled from both sides and we finally get 
h h

v
t x

 
 
 

. This form 
h h

v
t x

 
 
 

 is 

not the most formal way of writing but it is a very practical way of writing. This form is 

not the most formal way of writing because the smallness of the parameter   is inbuilt in 

this writing. So a more formal way is to write u  as 2

0 1 2 ......u u u u     , v  as 

2

0 1 2 ......v v v v      in the limit of 0  . This is called as asymptotic expansion. 

In the limit of 0  , al the terms 1u , 2u , 1v  and 2v  are gone. So, u  in the leading order 

will be represented by 0u  and v  in the leading order will be represented by 0v . So the 

form 
h h

v
t x

 
 
 

 is actually in terms of the leading order terms (so by presuming 0   

we are actually writing the leading order terms). The expansion in the asymptotic series 

is a formal way of writing but the form 
h h

v
t x

 
 
 

 is little bit informal. Sometimes we 

have to use an informal way of writing which can alert us about the physics of the 

problem. The alertness that should come about the physics of the problem is that we have 

already considered   as a small quantity. So, 
h h

v
t x

 
 
 

 is the kinematic boundary 

condition at the interface. 

Overall in the present chapter we have discussed about how to non-dimensionalize the 

thin film governing equations and how to non-dimensionalize the kinematic boundary 

condition. Of course, there are tangential stress balance and normal stress balances which 



need to be non-dimensionalized before we take up the final formulation of the thin film 

problem. That will be discussed in the next chapter.  

 


