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Lecture - 41 

Thin Film Dynamics 

(Contd.) 

 

In the present chapter we will continue with the thin film equation which was discussed 

in the previous chapter. The physical situation that we are considering is just an example 

and it should not be considered as a general situation. 
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We have an inclined plane with an angle of inclination θ. There is a thin liquid film on 

the top of the inclined plane as shown in figure 1. The film thickness in general is not a 

constant, it is a variable. The film thickness h  is a function of x and time, i.e.  ,h x t . 

The dimensional x-direction and the dimensional y-direction are shown in the figure. We 

assume two-dimensional and incompressible flow. The length scale 0h  (corresponding to 

the film thickness h ) is considered to be very small as compared to the length scale 

cL (corresponding to the length L). So, the ratio 0

c

h

L
   is much less than 1. This is the 

most important consideration. Another consideration is that the product of 2  and 

Reynolds number  ReL  is not large. So Reynolds number is not abnormally large 

otherwise even if   is small, the product of 2  and Reynolds number can be moderate. 

So we are ruling out that situation. Our hope is that even if Reynolds number is 

Figure 1. Schematic of a thin film flow down an inclined plane of inclination angle θ. 



moderately large,   is so small that 2  is very small and the product of 2  and Reynolds 

number will be negligible (this is our intuitive hope). With these considerations, the 

continuity equation is given by 0
u v
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. Continuity equation will be always 

important. The two components of the momentum equation are given below 
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So we have a very interesting thing along the y -direction which is across the film 

thickness. Here the pressure variation is like a hydrostatic pressure variation which is 

purely gravity driven pressure variation. We have already given detail consideration in 

the previous chapter on how different terms of the two momentum equations can be 

dropped to arrive at these two simplified equations. So we are not going to repeat those 

things in the present chapter. Here we concentrate on the requirement to solve these 

simplified equations. Out of these equations we really do not know about three 

variablesu , v  and p . We also do not know another thing, it is hidden within these 

equations because everything is expresses in terms of the film thickness h . But the film 

thickness is not known to us; so h  is also unknown. So the film thickness is also not 

known. We have earlier discussed the thin film problem as a special problem in the 

context of exact solution of Navier-Stokes equation. But there is a difference between 

that problem and the present generalized thin film theory. At the thin film problem in the 

context of exact solution of Navier-Stokes equation we considered the film thickness to 

be constant, so it was not a variable for that problem. But in the present problem it is 

now a variable for the problem. So we require enough boundary conditions to solve this 

problem. Now we focus on the boundary conditions.    

First of all, we will consider the boundary condition or the boundary conditions at the 

interface. It is important to highlight that although the interface is drawn as flat, in 

general, we should consider it as undulated. One should never keep that prejudice in 

mind that interface is flat. Under certain condition it may be treated as flat but in general 

it cannot be treated as flat. So the question arises about what are the boundary conditions 



at the interface. The boundary conditions at the interface are typically as follows. One 

type of boundary condition refers to force balance at the interface and therefore they are 

kinetic in nature; they refer to force balance. Another type of boundary condition at the 

interface purely follows from kinematic constraint and that is called as kinematic 

boundary condition. First we will start with the force balance boundary conditions and 

then we will arrive at the kinematic boundary condition.    

When we have an interface like what is drawn in figure 2, there are two important 

directions, ‘s’ and ‘n’ directions in terms of the curvilinear co-ordinates. These ‘s’ and 

‘n’ directions are very important. Now we will write one of the force balance equations 

along the ‘s’ direction and then we will write the other force balance equation along the 

‘n’ direction. The force balance along the ‘s’ direction is called as the tangential force 

balance. 
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To understand clearly about the tangential force balance boundary condition, we will 

first consider a flat interface which will be further extended to a curved interface. 

1    1d   
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We choose the flat interface as an example. Figure 3 represents an edge view of the 

interface. In reality it is something like a flat membrane. We have to do force balance at 

the interface. On the top of the interface there is gas, i.e. there is a phase which is having 

Figure 2. Schematic of an interface where the directions ‘s’ and ‘n’ are shown.  

Figure 3. Schematic of the tangential force balance. 



much less viscosity and density as compared to the phase which is on the bottom side. 

This is our assumption and we do not really bother about what is there on the top side. 

On the bottom side there is some liquid. Now, at the interface, there can be a variation of 

the temperature along the tangential direction. If there is a variation of the temperature or 

composition along the tangential direction, there will be a variation in the surface tension 

force because surface tension is a strong function of temperature and composition. To do 

the tangential force balance, we consider a differential element of thickness dx  while 

the width of the element is chosen as unity. On the left hand side, the acting surface 

tension force is 1   while on the right hand side, the acting surface tension force 

is   1d    . The other force which is acting on the free surface is the viscous force 

which is given by 1 dx    . We need to remember that the surface tension is force per 

unit length, so to obtain the force we need to multiply surface tension by the length. 

However, shear stress    is force per unit area, so to obtain the force we need to multiply 

stress by the area which is equal to the length multiplied by unit width. The free diagram 

of the element at the surface is shown in figure 3. But this is a fluid membrane not a solid 

membrane. For equilibrium, the resultant force along the x’-direction will be equal to 

zero. So, at equilibrium, we can write   0d dx             from which we get  
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. So, for a flat interface we get 
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. Now the sanctity of the x’-direction 

gets completely lost if the interface is undulated. Then what matters is the local 

tangential direction and the local normal direction. Here, instead of writing the shear 

stress    along the x’-direction we should have a resolved component of    along the ‘s’-

direction. To resolve    we need to remember the relationship between the traction 

vector and the stress tensor. In the expression 
d

dx





 


,    is nothing but a component 

of the stresses coming from the stress tensor along the x’-direction.  

Now we write the traction vector in the index form Tn

i i j jn    where i = 1 indicates the 

x’-direction, i = 2 indicates the y’-direction and i = 3 indicates the z’-direction. Since the 

problem under consideration is a two-dimensional problem, we will have only two 

values of i, i = 1 will be the x’-direction and i = 2 will be the y’-direction. If we get the 

components of T n

i
 , we can constitute the vector Tn  for which i = 1 will be the x’-



component and i = 2 will be the y-component. The vector Tn  will have a component 

along the ‘s’-direction and ˆTn s   will be equal to    if the interface is flat. So the left 

hand side of the tangential force balance equation is a little bit more straightforward even 

for the case of a curved interface. On the other hand, in the right hand side, instead of 

finding the derivative of surface tension   along the x’-direction we need to find out the 

variation of   along the ‘s’-direction. To do this, first we write the expression ˆTn s   in  

the vector form which will be of the form  ˆ ˆTn s s   where ŝ  is the unit vector along the 

‘s’-direction. Now in case of a curved interface, this vector form of stress  ˆ ˆTn s s   will 

not be equal to 
d

dx


 simply, instead it will be equal to s   , so,  ˆ ˆTn

ss s     . Since 

the vectors in both the left hand side and the right hand side are in the same direction, we 

can eliminate the directional part. In the left hand side, the form ˆTn s   is already in 

resolved form, so we do not need to bother about this (and we do not need to 

unnecessarily write it in vector form, so, the unit vector ŝ  is dropped). Similarly, we 

have to write the right hand side in the scalar form and the scalar form is the resolved 

component of the vector along the tangential direction. So, we get,    ˆ ˆTn

ss s     . 

The operator s
  is called as the surface gradient operator. From the vector calculus 

angle, we have to make sure that when we write various terms, the left hand side and the 

right hand side should be consistent. Since Tn  is a vector and ŝ  is also a vector, the dot 

product ˆTn s   will be a scalar. On the right hand side, the operator is sort of a gradient 

operator. It is not the traditional gradient operator but the surface gradient operator. But 

the gradient operator acting on a scalar   will make s  a vector. To we have to 

convert it into a scalar so that both the left hand side and the right hand side remain 

consistent. To make the vector s  into a scalar, we use the vector dot product where 

the other vector is the unit vector ŝ  along the ‘s’-direction.  

Now to understand about the surface gradient operator, let us take an example of the 

acceleration vector. Acceleration as a vector  a  is the vector sum of the ‘s’-component 



 sa   and the ‘n’-component of the acceleration  na   , i.e. s na a a    . So the ‘s’-

component  sa   can be written as s na a a   . The unit vector in the ‘n’-direction is 

given by n̂  which is a vector marker of na  . The scalar component is nothing but n̂ a  

which results  ˆ ˆ
sa a n n a     . In the similar way, the surface gradient operator can be 

written as  ˆ ˆ
s n n      . This is not a procedure to derive the surface gradient 

operator. One should not take this as a derivation but it should be taken as an analogy. 

The analogy is that the component of   along the ‘s’-direction is like the component of 

any vector along the ‘s’-direction, so, philosophically it is similar. The form  ˆ ˆa n n a    

is algebric quantity while the form  ˆ ˆn n     is a vector operator, so although there 

are analogous they are not exactly the same. So we have defined s
  through the 

expression  ˆ ˆ
s n n       and    ˆ ˆTn

ss s      represents the tangential force 

balance. We should check once all the expressions to see whether all terms are consistent 

or not. We have to make sure that all the variables used till now are in their dimensional 

form. All dimensional variables are represented by the ‘
/
’ symbol while only for the unit 

vectors ŝ  and n̂ , we do not need to use the ‘
/
’ symbol. So far we have discussed the 

tangential force balance. Next we will consider the normal force balance. 
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Let us consider the interface (as shown in figure 4) which is in static equilibrium where 

on one side there is a pressure 0p  while on the other side there is there is a pressure p . 

Then we can write 0sp p
R

     where R  is the radius of curvature of interface,  sp   is 

the pressure on the surface and it is a planar problem (so there is no question of existence 

of the terms like 1R  and 2R  in the denominator). This is basically the Laplace pressure 

Figure 4. Schematic of an interface used for normal force balance.  



that we are talking about. Here,  is the surface tension locally and R  is the radius of 

curvature of the interface locally. 

So the question arises about whether the same equation will be valid under dynamic 

conditions or not. In general, the answer is that the same equation will not be valid under 

dynamic conditions. Under dynamic conditions there is also a viscous normal stress in 

addition to pressure. So the equation 0sp p
R

     will remain valid only under static 

condition but in dynamic conditions we have the additional viscous normal stress  

term. In order to find the viscous normal stress we have to make a dot product of the 

traction vector Tnwith the unit vector in the normal direction n̂ . So, the normal force 

balance equation becomes  0
ˆTn

sp p n
R

        where ˆTn n   is the viscous normal 

stress. So, the tangential component was the dot product of the traction vector with the 

unit vector ŝ , here it is the dot product of the traction vector with unit vector n̂ . We 

have given a minus sign before the viscous normal stress because pressure by definition 

is compressive whereas the viscous normal stress is tensile and positive. This does not 

complete the discussion on the normal force balance because of a very interesting 

physical phenomenon. When the film thickness become smaller and smaller, there is a 

critical film thickness when the Van der Waals forces start becoming important. When 

the Van der Waals forces start becoming important, we represent the equivalent Van der 

Waals forces (in a pseudo continuum type of framework) by an augmented pressure 

called as disjoining pressure or excess pressure p
 . Even in the static condition we need 

to consider this additional term and the normal force balance equation in the static 

condition becomes 0sp p p
R





     . Similarly, considering this disjoining pressure or 

the excess pressure the normal force balance under dynamic conditions become 

 0
ˆTn

sp p n p
R





        . Typically this excess pressure p

  is not a constant but it 

is a function of the local film thickness. It depends on the kind of the situation but 

typically it scales with 
3

1

h
, so, 

3

1
p

h

  . So, if the film thickness is smaller and smaller, 



the term p
  will becomes so much that it may overweigh all other terms in the normal 

force equation. 

Overall, in the present chapter we have discussed the force balance boundary conditions 

at the interface, i.e. the normal force balance and tangential force balance. What we have 

not touched upon till now is the kinematic condition at the interface and it will be 

discussed in the next chapter. 

 

 


