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Lecture – 40 

Thin Film Dynamics 

In the present chapter we start with a new topic which is thin film dynamics. Thin film 

dynamics refers to a general class of problems where we have a liquid film formed which 

is sufficiently thin as compared to other relevant length scales of the problem. For 

example, in micro-scale flows or even in nano-scale flows sometimes we may have a 

thin liquid film the thickness of which is much smaller than the characteristic geometric 

dimensions. So there could be many such situations. For example, one can think of a 

problem called as spin coating. In spin coating we have a liquid which needs to be coated 

on a surface. So the liquid is spun on a disc and then the thin liquid film forms on the 

surface. The film spreads radially outwards because of the rotational effects. So, in this 

way there can be many such situations where we can actually use the technology or the 

science of the thin film formation and dynamical evolution of the thin film to understand 

the motion or to characterize the motion or even to develop new applications. For 

example, one can use thin film dynamics to understand the application of the spreading 

of a thin liquid film under the application of an electric field. This is a very important 

consideration in modern science and technology where electric field combines with fluid 

dynamics to solve some outstanding problems. So it is therefore quite important to 

understand about how a thin liquid film forms and dynamically evolves on a surface. 
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Figure 1. (i) Schematic of thin film flow down an inclined plane of inclination angle 

θ. (ii) corresponds to the situation for boundary layer of thickness δ over a flat plate. 



Now we start with something which we have already discussed earlier, i.e. a special thin 

film dynamics problem. Here we have an inclined plate with an inclination angle θ as  

shown in figure 1(i). We have a thin liquid film of height h. At this moment we are not 

commenting about whether h is a constant or a variable which is the key of our 

discussion. For the time being we are assuming this height as h and we are using only 

one constraint, i.e. the height h is much less than the length L which defines it as a thin 

film. Let us imagine a corresponding situation for boundary layer over a flat plate. We 

are just trying to draw an analogy. If we have a flat plate of length L and we have a 

boundary layer developing (as shown in figure 1(ii)), then the boundary layer theory 

remains valid if the thickness of the boundary layer δ is much less than the length L, i.e. 

1
L


. So in some sense, the thickness δ of the boundary layer theory is equivalent to 

the length scale h of thin film but there are interesting physical dissimilarities. In the 

boundary layer theory we are talking about a very high Reynolds number flow because 

the boundary layer is thin only when the Reynolds number is large. So we are talking 

about a high Reynolds number flow in the boundary layer theory. On the other hand, we 

are talking about typically sluggish or low Reynolds number flow in thin film dynamics. 

Although thin film dynamics really does not bother so much about the Reynolds number 

there are other forces which are equally or even more important for thin film dynamics. 

Not just viscous force and inertia force, surface tension force, gravity forces are also very 

important for thin film dynamics. So Reynolds number alone cannot decide anything. 

But in most of the situations in thin film dynamics we are actually concerned about flow 

at low Reynolds number. So what makes the thin film dynamics problem akin or similar 

to the boundary layer problem is not the Reynolds number, they are very disparate. 

Despite the difference in the magnitude of the Reynolds number in these two cases, the 

similarity lies in the separation of the length scales (this is the key). In thin film 

dynamics, the length scale h is considered much smaller than the axial length scale L. 

Similarly in the boundary layer problem, the boundary layer thickness δ is much smaller 

than the axial length scale L.  

Here we have a thin film confined in an environment; we have considered similar type of 

problem in the context of lubrication theory. When we have considered this in the 

context of lubrication theory, the major consideration follows from the fact that the wall 

is rigid. The height h can be a function of the axial co-ordinate, it can also be a function 



of time but it is a rigid boundary; that is the consideration in the lubrication theory. 

However, in thin film dynamics, there is a boundary between two phases (let us say one 

is the liquid phase while the other is the gas phase). If there is a boundary between two 

phases, then it is actually defined as a free surface. So unlike the lubrication theory 

where there is a rigid surface, in case of thin film dynamics it is a free surface. The 

presence of free surface will bring in its additional issues or complications and we will 

discuss that as we move ahead with this.   

Question may arise that why we select this particular problem to start since we have 

already solved this problem of constant film thickness in case of a low Reynolds number 

flow or fully developed flow in the context of exact solution of Navier-Stokes equation. 

Here we will start with the same problem; we will not really solve the problem again but 

we will formulate the problem. The reason of formulation of this particular problem is to 

see that how this formulation can be used to solve a problem which is significantly more 

complicated but essentially very similar. So we have a free surface with a height h and 

the key question arises about this height which may or may not be a constant. So we are 

talking about the height or the film thickness h (the height which we are talking about is 

actually the film thickness) which can be variable. In fact, in thin film dynamics, the 

general scenario talks about finding out h as a function x and time where x is the 

longitudinal co-ordinate. 

Let us set up the x-axis and the y-axis like what is drawn in figure 1(i). Assuming a two-

dimensional incompressible flow, the continuity equation is given by 0
u v

x y

  
 
  

. 

Now, for the present problem, the x-momentum equation can be written as  

                      
2 2
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sin
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                    (1)   

Before understanding the significance of x and y, it is important to recognize that gravity 

is acting vertically downwards which we need to consider in our problem. We now 

perform an order of magnitude analysis very similar to the order of magnitude analysis 

we have done for boundary layers.  



Starting from the continuity equation 0
u v

x y

  
 
  

, the order of magnitude of the term 

u

x




 is given by ~ c

c

u

L
. Here 

cL  is same as the length L; for any other problem 
cL  can be  

something else. But at least in the present example, L is the characteristic length scale. 

So question arises about the velocity scale 
cu  and about the characteristic velocity of the 

present problem. In a boundary layer over a flat plate we already have a predefined 

characteristic velocity u  which is the velocity of the fluid coming from the free stream. 

But in the present case we do not know about the characteristic velocity or the scale 
cu . 

Although cu  is known to us, the thing that we know is that cu  and cv  are related to each 

other through the continuity equation. Here in the term 
v

y




 of the continuity equation, 

we have considered cv  as the order of magnitude of the velocity v . Also, the order of 

magnitude of the characteristic length scale along the y-direction is equal to 
0h . So, the 

term 
v

y




 becomes of the order of ~ 

0

cv

h
. This 

0h  will be a constant if the film thickness h 

is a constant. But there can be cases where h can be variable. For example, let us assume 

a typical situation where we have an undulated interface. In that case, the reference 

length scale can be chosen as the thickness at x = L. Also, the average film thickness or 

the smallest film thickness can be chosen as the reference length scale 
0h . In order to 

make the continuity equation to be satisfied, c

c

u

L
 and 

0

cv

h
 must be of the same order. So, 

c

c

u

L
~

0

cv

h
 from which we get cv ~ 0

c

c

h
u

L
. Here, the ratio 0

c

h

L
 is a key parameter for thin film 

analysis, we define it to be equal to the parameter  , so, cv ~ cu   where   is a small 

quantity.    

Actually the theory that we are going to follow in thin film dynamics is a specialization 

of the general asymptotic theory in mathematics. In asymptotic theory of mathematics, 

we require a small number based on which we make an asymptotic expansion. Here in 

the present problem, the small number is the quantity   which is equal to 0

c

h

L
. The entire 



theory will fail if the parameter   is not small. So we have to keep   small. If the film 

becomes so thick that it becomes of the order of the length L, then we cannot use this 

theory.   

Now we move into the x-momentum equation (i.e. equation (1)). The term 
u

t




 is of the 

order ~ c

c

u

t
; the term 

u
u

x





 is of the order of ~ 

2

c

c

u

L
 and 

u
v

y





 is of the order of ~ 

0

c cv u

h
. 

The term 
p

x




 is of the order of ~ c

c

p

L
 and we don’t know about the pressure scale 

cp . 

But we understand that cp  is important; in fact it is important in all problems. The 

reason is that the arbitrary shape of the interface can be sustained with the help of a 

characteristic pressure difference across two sides of the interface. That makes the 

characteristic pressure in this problem where we have an arbitrary evolution of the 

interfacial topology thereby making cp  important. It is the pressure difference across the 

two sides of the interface which allows the interface to sustain not only its static 

equilibrium shape but also its dynamical evolution. The term 
2

2

u

x





 is of the order of ~ 

2

c

c

u

L


 and the term 

2

2

u

y





 is of the order of ~ 

2

0

cu

h


. We use a particular symbol or 

nomenclature for all the variables, i.e. we have used 
/
 symbol for all variables in their 

dimensional form. Since eventually we will be dealing with the non-dimensional 

quantities, we represent these non-dimensional quantities without the 
/
 symbol. Now we 

make an assessment of the individual terms of the momentum equation. The terms on the 

left hand side of the momentum equation are the inertial terms where question arises 

about the time scale ct . There are different time scales possible but the natural choice of 

the time scale is the convective time scale, i.e. c
c

c

L
t

u
 . If we substitute this time scale we 

find that the two terms 
u

t




 and 

u
u

x





 are of the same order. Here, the order of 

magnitude of the third term 
u

v
y





 can be rewritten as ~ 

2

0

0 0

~ ~c c c c c

c c

v u u h u u

h L h L
 if we 

substitute the order of magnitude of the velocity ( v ), i.e. cv ~ 0
c

c

h
u

L
. Then, all three terms 



on the left hand side of the momentum equation becomes of the same order, i.e. of the 

order of ~ 
2

c

c

u

L
 . In the right hand side we have two viscous terms 

2

2

u

x





 and 

2

2

u

y





;  

and we have to decide that which term is important. The term 
2

2

u

x





 is of the order of ~ 

2

c

c

u

L


 and the term 

2

2

u

y





 is of the order of ~ 

2

0

cu

h


. So, the term 

2

2

u

x





 is not important 

because 
0h  is much smaller than 

cL . Therefore, the quantity 
2

0

cu

h


 is much greater than 

the quantity 
2

c

c

u

L


. So we can see a striking similarity of this thin film dynamics with the 

boundary layer theory. In boundary layer theory, the boundary layer thickness   is much 

less than the length L and here in thin film, 
0h  is much less than 

cL . Now we will arrive 

at a striking dissimilarity with the boundary layer theory. To show this, we compare the 

inertial and the viscous terms of the momentum equation. The inertial terms are present 

on the left hand side of the momentum equation while the viscous terms are present on 

the right hand side of the momentum equation. For comparing, one can take any one of 

the three inertial terms since they are of the same order. So, the ratio of the orders of the 

inertia term and the viscous term becomes ~ 

2

2

0

inertia
~

viscous

c

c

c

u

L

u

h




. One of the cu  term gets 

cancelled from the numerator and the denominator, we multiply both the numerator and 

the denominator by cL  and we get, 

2 2

0 0inertia
~ ~ Re

viscous
c c

L

c c

u L h h

L L





   
    
   

. Here, ReL  is 

the Reynolds number of the flow based on the characteristic length scale cL . We always 

define Reynolds number based on the characteristic length scale, not on the length scale 

0h  of the problem. So, the ratio of the inertia force and the viscous force becomes of the 

order of a product of Reynolds number and the quantity 

2

20

c

h

L


 
 

 
.  Since   is a small 

quantity, 
2  is also supposed to be very small, in fact smaller. So, when 

2  is much less 

than 1, our intuitive expectation is that even for a moderate Reynolds number the product 



2ReL   will not be very large. Therefore, although it is not mandatory, it is customary 

that under all practical circumstances the inertial effects are not considered in the thin 

film problems until and unless the inertial effects become so important and dominating  

that they have to be considered. So we have to keep in mind that the thin film dynamics 

does not tell us that the inertial effect has to be neglected. It has nothing to do with the 

formulation of the thin film dynamics. But under most practical circumstances the 

inertial effects are neglected when thin film dynamics is applied. So this is the reason 

why we will go ahead with the formulation with the inertial effects being neglected. 

Once we neglect the inertial effects, the governing equation boils down to a very simple 

scenario which is given by  

                                            
2

2
0 sin

p u
g

x y
  

  
   

  
                                               (2)   

Since the inertial effects are not important along the x-direction where the predominant 

motion is taking place, these terms will not appear in the y-momentum equation. We just 

write the y-momentum equation for the sake of completeness of the problem which is 

given by  

                      
2 2

2 2
cos

v v v p v v
u v g

t x y y x y
   

            
                      

                    (3)   

Now we perform the order of magnitude analysis. In the left side we write only one term 

because all the three terms will eventually have the same order of magnitude (as shown 

in the case of x-momentum equation). The inertial terms become of the order of ~ 

c c

c

v u

L


. Now we have to decide that out of the two viscous terms 

2

2

v

x





 and 

2

2

v

y





 

which one is important. Since the x-length scale  cL  is much larger than the y-length 

scale, therefore, the term 
2

2

v

y





 will be important. Now, this term 

2

2

v

y





 is of the order 

of ~ 
2

0

cv

h


. So, the ratio of the orders of the inertia term and the viscous term for the y-



momentum becomes 

2

0

2

0

inertia
~ ~

viscous

c c

c c c

c c

u v

L u L h

v L

h





 

 
 
 

 where one term 
cv  gets 

cancelled from the numerator and the denominator. Since 
0 ch L , in this case also, the 

inertial effects are negligible as compared to the viscous effect; so we can leave the  

inertial effect part. Regarding the viscous effect part the big question arises about the 

viscous effect term 
2

2

v

y





 since we have considered this term to be important as 

compared to the inertial term. 
2

2

v

y





 is the term which highlights that inertial effect is 

negligible as compared to the viscous effect. The order of magnitude of this term 
2

2

v

y





 

is ~
2

0

cv

h


 while the order of magnitude of its corresponding counterpart in the x-

momentum equation is given by ~ 
2

0

cu

h


. Hence, the ratio of these two contributions of 

viscous effect of the y-momentum and the x-momentum equation becomes of the order 

of the ~ c

c

v

u
. As per the continuity equation, c

c

v

u
 is of the order of ~ 0

c

h

L
 which is nothing 

but equal to the small quantity   where   is very small as compared to 1. Therefore, the 

moral of the story is that in y-momentum equation, of course the inertial effect much 

negligible as compared to the viscous effect but the viscous effect is itself negligible 

when compared with the x-momentum equation. So, in the y-momentum equation we are 

left only with the pressure variation 
p

y




 and the body force term cosg  . Finally we 

need to discuss one point before closing this particular chapter which is the scale of 

pressure cp . We have seen that the scale cu  depends on the physics of the problem, it is 

not like that we have a fixed u  for the boundary layer over a flat plate. But cp  is also 

another unknown variable like cu . We have to establish a relationship between cu  and 

cp . For that, we need to focus on the x-momentum equation 
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2
0 sin

p u
g

x y
  

  
   

  
 where the inertial terms are already gone. There is a 

remaining body force term on the right hand side which becomes equal to zero if the 

inclination angle θ is equal to zero. But the two terms 
p

x




 and 

2

2

u

y





 will always 

remain. These two terms will always remain and the term sing   may or may not 

remain depending on the value of θ. We can arrive at a scale of 
cp  by equating the scale  

of the term 
p

x




 with the scale of the term 

2

2

u

y





. This means c

c

p

L
 is of the order of ~ 

2

0

cu

h


 from which we can write 

2

0

~ c
c c

u
p L

h


 .  From this we can rewrite the scale of 

cp as 
2 2

0

~ ~c c
c c

c

u u
p L

h L

 


  by substituting 2 2 2

0 ch L  where one 
cL  term gets cancelled 

from the numerator and the denominator. From this scale 
2

~ c
c

c

u
p

L




 we can see that 

pressure becomes very important because it scales with 
2

1


 where   is a small quantity 

in this particular problem. So, overall, we have arrived at a pressure scale which depends 

on the velocity scale where the velocity scale depends on the physics of the problem. 

Also we have arrived at the governing equations of continuity and momentum and we 

will take it up from this point in the next chapter.  

  

 


