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Lecture - 04 

Linear and Volumetric Deformation; Perspectives from Mass Conservation 

I. Linear and Volumetric Deformation of Fluid 

 

Fig 1: A rectangular element of fluid undergoing a generalized flow, the line segement AB 

deforms to A’B’ in the time interval t .  

After discussing Angular deformation in the previous lecture, we will discuss linear and 

volumetric deformation in this lecture. The deformations being discussed are small 

deformations occurring over infinitesimal interval of time. Therefore, it becomes possible as 

well as useful to decompose the deformation into angular and linear. For larger durations of 

time, the total deformation is simply the integral over its infinitesimally small splits. 

To quantify the linear deformation of fluid, consider a rectangular volume of fluid as 

presented in Fig 1. The first step is to individually calculate the change in x , y and z . 

Once these are obtained, the change in volume of the fluid element can also be obtained.  



To calculate the change in x , we consider the segment AB that deforms to A’B’ as 

presented on the top of Fig 1. The lengths AA’ and BB’ are also presented. The ... represents 

higher order terms. The deformed length of AB is x plus the difference between AA’ and 

BB’ (more specifically, BB’-AA’), i.e. new- x = ...
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as the strain along x per unit time, i.e. change in x (i.e new- x minus x ) divided by 

x divided by t with x and t being infinitesimally small. Denoting the strain along x by 

xx and utilizing the expression for new- x obtained above, we have 
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Here, xx is a component of the second order tensor ij , which requires two indices i and j for 

its definition. A second order tensor requires two indices (or two directions) because one 

index represents the direction of the variable being represented (strain in this case), and the 

second index represents the (normal of the) plane that is used as the reference to calculate the 

variable. Stress is also a represented as a second order tensor, as we will see in later lectures.     

Formally, in terms of mathematics, a second order tensor maps a vector on to a vector. 

For fluid the change in volume is a more important quantity that changes in length, as volume 

is typically the real practical quantity with which one deals with in the context of fluid 

mechancis. We therefore obtain the expression for the new volume of the fluid element 

considered in Fig 1. This new volume equals 
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(i.e. new volume minus initial volume) divided by initial volume divided by time, i.e., 
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Hence, from this expression, we deduce that volumetric strain of a fluid element is the 

divergence of the velocity vector.  

A flow is said to be incompressible when there is no change in volume of a fluid element, 

implying that for an incompressible flow, divergence of the velocity vector is zero. It has 

been a long-standing misconception that divergence of velocity being zero is a consequence 

of conservation of mass for incompressible flow. However, as we can see here, it is purely 

kinematic constraints that 0v = for an incompressible flow.  

Strain Rate Tensor: Having discussed linear, volumetric and angular deformations, we see 

that the common thing in all their expressions is that the involves terms are essentially a 

spatial partial derivative of some component of velocity. Therefore, the generalized rate of 

deformation can be expressed as i
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rate of deformation tensor. This is a second order tensor it requires two components (i.e two 

indices) for its specification. 

This tensor can be decomposed into two parts as shown below. 
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The first term of this decomposition represents deformation. This deformation is linear if i=j 

and angular otherwise. The second terms represents rotation. Further, the first term is 

symmetric and the second term is skew symmetric. 

II. Continuity Equation 

Since continuity equation is strongly related to volumetric strain rate and thereby divergence 

of velocity vector, we discuss it at this stage. However, the readers are cautioned that 

Continuity equation is not a part of kinematics of fluids.  

The holy grail of mass conservation in fluid mechanics is the continuity equation. 

Notwithstanding the complexity of the flow, if it does not satisfy continuity equation, one 

needs to examine whether such a flow will exist or not. We derive the continuity equation 

using two approaches – control mass approach and control volume approach, in this lecture. 

Control Mass Approach: In this approach, consider a fixed element of fluid (also called as 

control mass). The mass of this element is density times the volume, i.e. m = . Taking the 

log, we have ln ln lnm = + . Taking the time-derivative of this, we get the equation, 
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Since the mass of the element of fluid must is finite and must be conserved, the LHS 

vanishes, as presented in the equation. Next, we convert the first term of  RHS from the total 

derivative to spatio-temporal derivative, which effectively implies switch from Lagrangian 

paradigm (where control mass is specified) to Eulerial paradigm. We also substitute the 

second term 
1 D

Dt
, which is the volumetric strain rate with v  using the derivation in the 

previous section. This gives us the equation 
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The equation on the right is obtained by multiplying the equation on the left by  and then 

some straightforward algebra. 

 

Fig 2: A cubical control volume in the a general flow-field, the mass fluxes at the boundaries 

are labelled 

Control Volume Approach: This is the more traditional approach to deriving the continuity 

equation. In this approach, we consider the rectangular control volume presented in Fig 2. 

The mass fluxes on all the boundaries are presented in the figure. Applying mass balance to 

the control volume, i.e. net rate of mass coming into the control volume equals rate of 

increase of mass in the control volume, we have 
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Along the x-direction, the net rate of mass coming in equals 
x x xm m +− . Similar expressions 

apply for the other two directions as well. Therefore, the mass balance equation coverts to 
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Using the Taylor series expansion for x xm + , which is ...x
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This equation is the same as obtained using the Control Mass approach.  

Incompressible Flow: We conclude this lecture with a short discussion on imcompresible 

flows. Oftentimes, fluid mechanists have the misconception that incompressible flow means 

density is constant. We examine this notion more carefully.  

For any flow, continuity equation must be satisfied. This implies 
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As we have derived earlier in this lecture from pure kinematic constraints, for incompressible 

flow, divergence of the velocity vector is zero. Due to this, the continuity equation simplies 

as 
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While this equation is trivially satisfied by a constant density, it can also get satisfied by non-

constant density. We illustrate this with an example. Consider a flow for which density varies 

as kxy = , where k is a constant. For this variation of density, the simplified continuity 

equation for compressible flow takes the form 0u v
x y

  
+ =
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, which upon further 

substitution of the expression for  gives the constraint 
u x
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= −  which is fairly realistic. In 

summary, a flow-field that is kinematically constrained to have 
u x

v y
= − can allow for a non-

constant density of the form kxy = while still being incompressible. 


