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Lecture - 39 

Lubrication Theory (Contd.) 

 

In the previous chapter we have discussed about the lubrication theory and we have 

come up with a set of simplified x-momentum and y-momentum equations where x and y 

are the two orthogonal directions in the plane of the flow. We have discarded some of the 

terms in the momentum equation keeping in view that they are not important because of 

the order of magnitude of these terms relative to the other more dominant terms. 
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Now we just reconstruct the physical situation that we are considering. There is an 

arbitrary top surface for which the height h is a function of x and time, i.e.  ,h x t  where 

the two axes are x-axis and y-axis as shown in figure 1. For the gap height (h) much 

smaller than the length L, the simplified form of the x-momentum equation in the leading 

order is given by  
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Similarly, the simplified y-momentum equation in the leading order is given by  
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Figure 1. The confinement height h as a function of position and time h(x,t).  



We have discussed the exact mathematical descriptions of these forcing terms in the 

previous chapter. Now we consider an example where there is no body force. This is the 

reason we have generically included the body forces as the forcing terms which can be 

set equal to zero in absence of body force (which is a special case). As discussed earlier, 

we have made a co-ordinate transformation before solving these equations. Both these  

two equations are non-dimensional (so in  ,h x t , h is non-dimensional height, x is non-

dimensional axial co-ordinate and t is non-dimensional time). We have considered a 

reference frame which is having a non-dimensional velocity 0 0
ˆ ˆv u i v j    . With this 

we assume that there is a reference frame which moves towards the right with a velocity 

0u  . Then after co-ordinate transformation, the first boundary condition in the 

dimensionless form becomes at y = 0, 0u u   while the second boundary condition is at 

 ,y h x t , 0u  . These two boundary conditions correspond to the x-momentum 

equation (1), i.e. 
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 to get the velocity profile. If we integrate the x-momentum equation 

with respect to y, we get  1
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. Since we are integrating with respect to y, 

we can treat the right hand side as a constant, so 1c  will be a function of x. Integrating 

the expression of 
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are two unknown factors 1c  and 2c , we need two boundary conditions. We apply the 

boundary condition at y = 0, 0u u  ; this is the first boundary condition. Using this 

boundary condition in the expression of the velocity    
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 we get 

2 0c u  ; so it becomes a constant. But we can see that this is a formulation which has a 

provision of accommodating a velocity which is a function of x. We have used 0u  where 

0u  itself can be a function of x and in that case 2c  will become a function of x. The 

second boundary condition is  ,y h x t , 0u  . Using this boundary condition in the 



expression of the velocity    
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1c  and 
2c  we get the final form of the 

velocity profile which is given by  
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Whenever we get a solution, not just for fluid mechanics but for any problem, the first 

thing that we should check is whether it is satisfying the boundary conditions or not. It is 

not that if it satisfies the boundary conditions, it is bound to be correct. But if it does not 

satisfy the boundary conditions, it cannot be correct, so it is the other way around. 

Looking into this final expression  2
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 one can say that at y = 

0, 
0u u   and at  ,y h x t , 0u  . So the velocity profile at least satisfies the 

boundary conditions. The y-momentum equation does not come into picture here because 

it tells that the pressure gradient along the y-direction is equal to zero, i.e. 0
p
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. So we 

do not have to bother about the pressure variation along the y-direction. However, we 

may have to bother if the body force along the y-direction is important. Here in the 

present example we are not considering any forcing term along the x and y directions. So 

we have to keep in mind that this is the example with the forcing term set equal to zero. 

Many nice problems can be generated from this general formulation by specifying 

different forcing terms. Now we will develop a strategy to fulfill our objective. Our 

objective is to find a governing equation for the pressure distribution. To highlight the 

importance of the pressure distribution let us recall the scale of the pressure. As 

discussed in the previous chapter, the scale of the pressure is 
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remaining parameters fixed). But there is other form of stress which is the shear stress. 

The scale of shear stress is given by 
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becomes  
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. Since the parameter 

  is small, pressure is much more significant in lubrication theory than the 

hydrodynamic shear itself. This is the reason why the pressure distribution itself dictates 

the force on the boundaries. This is the reason why we need to develop a governing 

equation for the pressure distribution (this is our objective). The strategy that we follow 

is very simple. We differentiate the expression of the velocity profile 
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 with respect to x and then equate the term 
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using the continuity equation. Then we integrate that equation with respect to y to obtain 

v. Now v at y = h  is nothing but equal to 
h

t




 which is the rate of change of h with 

respect to time; that will close the problem. Let us workout the steps such that we can 

understand it better. Differentiating the expression  2
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 with 

respect to x results  
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where we have used the product rule of differentiation when we differentiate the 

expression   21
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incompressibility condition we can write 
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In principle, if we integrate this expression with respect to y, we will get the velocity v. 

Here we need to remember that all these are partial integration because all derivatives are 

partial derivatives. The 2-D incompressibility condition reads as 0
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given the non-dimensional form. We will first derive this expression from the 

dimensional form of the incompressibility condition which is given by 0
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Now we use the non-dimensionalization scheme, i.e. 
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chosen to satisfy this equation, the relationship between 
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cv  is such that when we  

substitute it, both dimensional and the non-dimensional forms will be the same. Now 

integrating the expression  
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 with 

respect to y we get 
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In principle v can be a function of time t also. So we may extend the expression  3c x  as 

a function of both x and time  3 ,c x t  but eventually we will get a constant value of it by 

satisfying the boundary condition. The boundary condition is at y = 0, v = 0; this is the 

no-penetration boundary condition. If we use this boundary condition, then the factor 
3c  

will be equal to zero and we get an expression of v. We will get the governing equation 

for pressure if we substitute the condition at y = h, 
h

v
t


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. This is a kinematic constraint 

that the rate of change of h with respect to time is the velocity at y = h which has to same 

as the velocity of the plate at y = h. Otherwise there will be a lack of contact between the 

fluid and the plate; plate and fluid have to move together (which is pure kinematics). 

Substituting this boundary condition in equation (6) we get  
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We can take the first two terms together and rewrite the equation as    
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Here the term 
h

t




 is equal to 

0v ; so the velocity at y = h is equal to 
0v . With the co-

ordinate transformation, the x-velocity has changed but the y-velocity has not changed. 

So at y = h, 0

h
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. If we have two plates and there is a fixed height between them, then 

the rate of change of h with respect to time is located from the bottom. Here we do not 

have any finite 
0u  because the velocity 

0u  has become equal to zero because of co- 

ordinate transformation. This is the whole objective of the co-ordinate transformation 

because of which the entire plate is only having a vertical height and no horizontal 

velocity. So, 
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 is the equation which is called as the famous 

Reynolds equation in lubrication theory (a very famous equation). We will now work out 

a problem where we will use the Reynolds equation to solve the force between the two 

plates. So let us work out a problem.  
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Let us consider that there are two plates and there is a layer of viscous fluid in between 

the two plates. As shown in figure 2, the top plate is moved towards the y-direction with 

a dimensional velocity 0v   so that the initial gap is increasing. The initial gap at time t = 

0 is equal to 0h . Here h is not a function of x. Now the question arises about the force 

that is required to pull the plate. When we pull this up there will be a resistance in the 

fluid because of which we require a force to pull the plate otherwise it does not 

spontaneously happen. So this problem is a special case of the previous problem. First of 

Figure 2. There are two plates where the top plate is moved towards the y-direction 

with a velocity 0v   .  



all, here h is not a function of x, i.e. 0
h
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. First we write the Reynolds equation in the 

dimensional form which is given by 
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between the dimensional and the dimensionless form is the presence of the viscosity µ in 

the dimensional equation and nothing else will change). If we change the variables of the 
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 from x to x , h to h , p to p  and t to t  ; then only an  

additional µ term will appear and nothing else will change. So in the non-dimensional 

case, the µ term is absorbed in the velocity scale. So in the dimensional form we can 

write 
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 where 
/
 symbol corresponds to the dimensional variable 

everywhere and any variable without 
/
 symbol means it is a dimensionless variable. Since 

in the present case h is not a function of x , we can bring it out of the partial derivative 

and we get 
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 where the velocity 0v   is constant. It is given that the velocity 

0v   is constant because our objective is to pull the plate with this constant velocity 0v  . 
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term h  by 0 0h v t   . So, h  is equal to the summation of the original height 0h   and the 

change of the height with time because of the velocity 0v  . So this h is an instantaneous 

height and 0h   is the height at t = 0. Since all these terms are not a function of x, we can 

treat the right hand side of equation 
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1k  and 2k  are the integration constants. Before applying the boundary condition, we set 

up a central axis where the origin is located at the centre. The length L is divided into 



two parts with each being equal to L/2 (also shown in figure 2). The first boundary 

condition is at x = 0, the pressure has to be symmetric with respect to the x axis, so, 

0
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 (at both sides there is atmosphere). Using this boundary condition we get 

1 0k  . 

Now at x  = L/2 or at x = -L/2 (both are equivalent), 0p  . We can set the pressure as 

the atmosphere pressure. If we set the pressure as the atmospheric pressure, then the 

remaining pressure will actually contribute to the force because the atmospheric pressure 

acts equally from all sides. So it does not contribute to the force. Using the condition at  

x = L/2, 0p  ; we get 
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and 
2k  we get the final form of the pressure distribution which is given by 
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. So we have only one step remaining, i.e. to calculate the force on 

the upper plate. The force on the upper plate is given by 
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Substituting the expression of pressure 
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calculated per unit width of the plate. So, one interesting thing to notice from this 

expression of the force is that the force comes out to be negative while all other 

parameters remain positive. It means that when the plate is moving up there is something 

which is actually dragging it down. This is the physical meaning of the negative force. 

Now question arises about whether we can calculate the force in this way unlimitedly or 

not. We cannot because if the plate goes up and up, there will be a situation when the gap 

height h will become comparable to the length L and in that case the lubrication theory 

will no longer remain valid. So for solving any problem, we have to keep in mind the 

assumptions behind the theory; these are the basic things which have to be kept in mind. 

Here the basic thing is that h is much less than L. So, when the plate is moving up and 

up, at some time h will become comparable with L and then lubrication theory fails and 

the prediction of the force does not work. On the other hand the other limit is a very 

interesting limit when the plate instead of moving up is coming down. So, when the plate 



is coming down, 0v   is negative. If 0v   is negative, the right hand side of the governing 

equation of the pressure distribution becomes negative which will result to a net positive 

force. It means that when the plate is coming down there is an upward force to resist that 

downward movement. In that case h will continuously decrease with time and the gap 

height h  will be represented by 0 0h v t    with 0h   being the original height at t = 0. So 

there will be a time when the gap h becomes very small such that the two plates almost 

touch each other. Since the term 
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 varies with the reciprocal of the cube of that gap, 

i.e. 
2

2 3

1p

x h




 
, the force will be tremendously high. So if we want to put an adhesive in 

between the two plates we will find a tremendously large resistance when we approach 

the plates (this is a very common day to day experience).   

We take two glass plates and a thin film of water. If we try to bring one of the plates to 

the other we will face huge resistance when we come sufficiently close. Not only this, 

but on the top of that intermolecular forces will also start acting. Van der Waals force 

and other forces will come into play when the plates are sufficiently close. So this is 

actually a very interesting problem which is called as adhesive problem. We put an 

adhesive and try to bring the two surfaces very close to each other. The limiting 

condition will be the case when the plates almost touch each other. But we will observe 

that it is virtually impossible to make these two plates touch because of the dependence 

of the force with 
3

1

h
. 

Overall, in the present chapter, we have discussed significantly about the lubrication 

theory. We have also understood about the pressure distribution in a confined system 

where the confinement height is a function of x and time. So far we have considered that 

any source of the acting force comes from either the pressure distribution or from the 

shear. But there are many interesting problems in micro-scale where the pressure 

distribution itself is generated because of the remarkable physics of surface tension. 

Form the next chapter, we will start understanding the role of surface tension in micro-

scale flows.     

 


