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Lubrication Theory (Contd.) 

 

 

In the previous chapter we have discussed about the basic premises of the lubrication 

theory and we have looked into the x-momentum equation consistent with the schematic 

as shown in figure 1. We start with the simplified from of the x-momentum equation 

which was derived in the previous chapter. The x-momentum equation is given below 
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Now we will consider the y-momentum equation which is given below 
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Figure 1. The confinement height h as a function of position and time h(x,t).  



So with an intuition that the velocity v  is one order of magnitude less than the velocity 

u , one would have had a tendency of neglecting the contribution of the y-momentum 

equation altogether. But the subtle thing is that we do not know anything about the body  

force term yF   and this yF   itself could actually dictate the physics of the problem. The 

term yF   could dictate the order of magnitude of the velocity scale 
cu  which will be 

shown later.  

Now we non-dimensionalize the y-momentum equation (2) with the relevant parameters 

according to the non-dimensionalization scheme discussed in the previous chapter. We 

are not going into the details of each steps but one can easily check this. The non-

dimensional form of the y-momentum equation (2) is given by 

                     
2 2

2 2 2 2

0 0

c c c c c
y yc

u v p v vv v v p v v
u v F F

L t x y h y L x h y


 

      
       

      
           (3) 

All three terms on the left hand side of equation (3) are of the same order with the 

coefficient c cu v

L


. The interesting thing about pressure is that pressure being a scalar its 

scale does not change. If we move from the x-momentum to the y-momentum, the scale 

of pressure remains the same whereas the velocity scales are different because of the 

directionalities. So the term 
p

y




 is of the order of ~ 

0

cp

h
. Now substituting the scale of 

the velocity 0~c c

h
v u

L
, the coefficient of the terms on the left hand side of equation (3) 

becomes 20 0

2
~ ~c c c

c c

u v u h h
u u

L L L L

 
 . In the next step, we multiply both sides of 

equation (3) by the factor 0

c

h

p
 and equation (3) becomes                                                                                                                                  

2 2
2 0 0 0 0 0

2 2 2 2 2

0

c c
c y yc

c c c c

h h v h v h hv v v p v v
u u v F F

L p t x y y L p x h p y p
  

      
           

      
         (4) 



Using the scale of the pressure 
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 Now the coefficient of the third term 0
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the x-momentum equation in terms of the leading order solution. Similarly, we will write 

the y-momentum equation in terms of the leading order solution. If the Reynolds number 

 ReL  is small, then the coefficient c cu v
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 and thus the terms in the left hand side of the 

y-momentum equation (3) will be negligible. The pressure gradient term 
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the order of 1 and will be present in the leading order equation. But there are other terms 
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Both of these two terms will not be important if the parameter   is small. Thus these two 

terms can be neglected in the leading order of the y-momentum equation. But we are 

uncertain about the body force term. So, the y-momentum equation in the leading order 

is given by  
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By leading order we mean that if the variable p  is expanded as 

2

0 1 2p p p p     , u  as 2

0 1 2u u u u      and v  as 

2

0 1 2v v v v     , then equation only leading order terms result in the equation 

(5) (so equation (5) is a shorthand way of doing the same). So, we have got all of our 

equations. But it is not a practical thing to solve this problem for a general case because 

for every problem there is a specific physics and that will drive the solution of the 



problem. So up to this step we can give a generic formulation. This generic formulation 

is very important because in the class we may do one representative problem to highlight 

about how this lubrication theory is used. But later in research, we can encounter an 

entirely different problem altogether where we need to apply this lubrication theory. If 

we have our fundamentals correct, then we can arrive up to this step and then according 

to the specific problem we can guide our solution. Therefore these fundamentals are very 

important (this is like the grammar of the subject). 

Now the next question arises about the pressure scale 
cp  which depends on the velocity 

scale cu  as 
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. So we have to find the velocity scale cu . One of the most 

straightforward considerations is that the x-motion of the upper boundary is governing 

the physics. This is possibility number 1 but there could be many possibilities. We will 

write all the possibilities. The physics of the problem only can tell us that out of these 

possibilities which one is correct; mathematics cannot tell us anything. We have to make 

a judgment about what is actually the relevant driving mechanism. Accordingly the scale 

has to be decided because the entire solution will be incorrect if we cannot choose the 

scale correctly. If the x-momentum of the upper boundary governs the physics then we 

can clearly write 0cu u  . If the y-momentum of the upper boundary governs the physics 

then we can write 0cv v   which also means  0
c

v
u
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
 . The two velocity scales 

cu  and 
cv  

are always linked by the   ratio. No matter how complex the flow is, the continuity 

equation has to be satisfied (that is the holistic idea about the continuity equation). Now 

let us assume that the x-component of the body force governs the physics. In that case we 

have to relate the velocity scale cu  with the x-component of the body force. To do this 

we look into the x-momentum equation at the leading order which reads as 
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of the order of 1 because in this way we have defined the scale. For the same reason, the 
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can make our life a misery. It becomes a critical situation when the top plate is given a 

motion and also there is a body force (let us consider electrical force as a body force). In 

that case we have to decide between these two factors (that which one has to be chosen) 

to determine the velocity scale 
cu . Since the term 

xF  is already non-dimensional, it is of  

the order of 1 and therefore, 
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that there is a body force and the upper boundary is given a motion and we have to 

decide out of these two which factor governs the physics. In that case also we have an 

answer. To do that, we have to put the numerical values of both these factors. Then out 

of these two factors, the one of higher order will govern the physics but we cannot 

discard these factors individually. The final situation comes when the y-component of the 

body force governs the physics of the problem. Then we have to look into the y-

momentum equation in the leading order which reads as 00 yc y
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equation we can tell that if the y-component of the body force governs the physics, then 
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logical decision making. Out of these four possibilities, we have to choose one 

appropriate scale and then we can proceed with the solution of the problem. For further 

illustration, we will first consider an example and then we will consider the problem. 

Let us assume that there is no body force, so, 0xc ycF F  . If there is no body force still 

we can have a development of the pressure gradient because of the geometry of the flow 

passage (the geometry can be seen from figure 1). If there is no y-body force, then from 

the y-momentum equation in the leading order we can write 0
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force, then from the x-momentum equation in the leading order we can write 
2

2

u p

y x

 


 
. 

Since there is no pressure gradient in the y-direction (i.e. 0
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is to replace the partial derivative 
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time is a very important variable. So, although pressure does not vary with y, it can be a 

function of time. So we will keep the term 
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 as a partial derivative. Eventually our 

objective will be to solve the equation 
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complexity of the problem is the boundary condition. Here the boundary has both x- 

motion as well as y-motion (as shown in figure 1 by the velocity 0 0
ˆ ˆv u i v j     ). It is 

very difficult to accommodate these two together. To solve this issue, we will make a 

clever transformation of the co-ordinate system. We will consider a reference frame 

which is moving towards the right with a velocity 0u   and with respect to this reference 

frame we will write the governing equation. Let us imagine a reference frame which is 

moving towards the right with a velocity 0u  . Then, with respect to that reference frame, 

one of the boundary conditions will be at y = 0,  0u u    which means that sitting on the 

reference frame it will appear that it is moving towards the left with a velocity 0u  . The 

non-dimensional form of the boundary condition can be written as at y = 0, 0u u   

where  0
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is still function of x and time; we have not relaxed that. Now it becomes convenient to 

tackle the upper boundary. Although the upper boundary still has the velocity 0v  , but it 

does not have the velocity 0u  . With these two boundary conditions we can solve the 

governing equation. We will take that up in the next lecture to see that how the present 

formulation can be used to calculate the pressure distribution in the confined passage.  

 

 

 

 


