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Lecture - 37 

Lubrication Theory 

 

In the previous chapters we have discussed about the steady and unsteady flows typically 

in the low Reynolds number regime. It is also important to recognize that the kinds of 

flows that we have considered so far have a fixed confinement height or a fixed 

confinement diameter. But in reality there can be situations when the confinement height 

itself can be a function of position and time. It is an interesting situation which is 

schematically represented in figure 1(i).  
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Let us assume that we have a bottom boundary and there is the confinement height h 

which is a function of x and time. h as a function of x is quite clear but h is a function of 

time in a sense that the gap can be lifted or can be put down so that the gap can be driven 

as a function of time. One can consider this configuration as a channel. This is a special 

type of channel flow but the channel is not the usual channel that we are talking about. 

So question arises about what can be the possible applications of this kind of a scenario. 

We have already talked about bearings. In engineering there is a type of bearing called as 

slider bearing where the configuration is something like that drawn in figure 1(ii). In this 

case it is a smooth linear function instead of the complicated function as observed in 

figure 1(i). In this case (i.e. in figure 1(ii)), it is like a tapered geometry and not a regular 

Figure 1. (i) The confinement height h as a function of position and time h(x,t). (ii) 

Slider bearing, the configuration of which is like a tapered geometry. 



parallel geometry. Let us take another example where we have one plate and we want to 

deposit a coating on this plate. We want to put another plate or a paintbrush and deposit a 

coating of paint on top of this. The paintbrush is coming close to the plate and trying to 

deposit the pattern. In a similar way one can think as if the top boundary of the channel 

(as depicted in figure 1(i)) is coming down. Interestingly, it is quite intuitive that when 

the top boundary comes down there will be a resistance to it against coming further 

down. When it goes up there is a resistance against it of going further up. At the end of 

this chapter we will learn the reason about why this is happening. All these physical 

problems fall under the paradigm of one mathematical theory which is called as 

lubrication theory. This has evolved from a pure mathematical theory based on 

asymptotic analysis. But it has been given subsequently an engineering flavor 

subsequently because the applications of this theory have been found to be very relevant 

in lubrication and bearing which is one of the very important engineering aspects.  

For simplification, we will first consider that it is a two-dimensional problem. The x-axis 

and the y-axis are shown in figure 1(i). Here the height h is a continuous function of x 

and time but it could be a discrete function of x and time. Here we have the extreme 

heights 
0h  and 

minh  where 
0h  is the maximum height and 

minh  is the minimum height. 

The length of the channel is L where we assume for the time being that there is no 

difference in wettability across the surface. So the physics remain invariant along the 

length L. Otherwise L no more remains the characteristic length scale of the system along 

x. Now for this theory to work, first we have to understand the assumptions that we are 

going to make to get into this theory. For the theory to work, the gap height (h) must be 

much less than the length L. This is very similar to the low Reynolds number 

hydrodynamics that we have studied earlier. Here the additional complexity is the 

variable nature of the gap. Here we assume that the gap height is much less than the 

length and therefore, one question definitely comes that whether 0h  or minh  to be 

considered as the characteristic height. The answer is we should consider 0h  or the 

maximum value of h to be the characteristic height because of 0h  is much less than the 

length L then minh  will surely be much less than L. So, the conservative parameter is 0h

L
 

which is much less than 1. We define 0h

L
 as a small parameter  , i.e. 0 1

h

L
  .   



Now we will make certain assumptions. First of all we will assume that it is an 

incompressible flow. It is an incompressible flow and it is a two-dimensional flow also. 

So it is a two-dimensional incompressible flow with the continuity equation given by 

0
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x y

 
 

 
. Like the previous problems or the previous cases here also we will make an 

order of magnitude analysis. The term 
u

x




 will be of the order of ~ cu

L
 where 

cu  is the 

characteristic velocity scale and L is the characteristic length scale along x.  Now question 

arises about the characteristic velocity scale and how it is generated. Now we will make a 

change in the notation of the variables. Since we will be mainly using the non-

dimensional equations, we denote all the variables of the dimensional equation by the ʹ 

symbol; the continuity equation 0
u v

x y

 
 

 
 is being replaced by 0

u v

x y

  
 
  

.  Since 

majority of the equations are in the dimensionless form, it will be easier to write. Let us 

assume the boundary has an arbitrary velocity 0 0
ˆ ˆv u i v j     (as shown in figure 1(i)). If 

we give the boundary an arbitrary velocity we can generate all types of very complex 

flows. Not only complex flows but very complex body forces can also be present. So this 

problem is a very general class of problem and far more general than the flow through a 

channel or a pipe. So, 
u

x




 is of the order of  ~ cu

L
 and 

v

y




 is of the order of ~ 

0

cv

h
. Now, 

here the problem is that we do not know about the velocity scales cu  and cv  because this 

is absolutely an arbitrary general situation which we have introduced. So cu  and cv  will 

depend on the actual physics which is governing the problem. We cannot really comment 

anything about cu  and cv  but one thing we can comment that 
u

x




 is of the order of 

v

y




 

which means that cv  ~ 0
c

h
u

L
, i.e. cv  ~  cu  (that much we can say). So we can say that 

if   is very small then cv  will be much less than cu . This might appear to be a little bit 

non-intuitive at times. Let us imagine a scenario that instead of the curved boundary (as 

shown in figure 1(i)) there is a plate at the top which is a special case of the curved 

boundary. Let us assume that the plate is given a vertical velocity. So the question arises 

that whether the relationship cv  ~ cu  still holds or not in presence of the given imposed 

vertical velocity. This is an interesting question which we will address later on. Even if 



we impose a vertical velocity the relation 
cv  ~ 

cu  still holds because it has to satisfy 

the continuity equation 0
u v

x y

  
 
  

. 

The gap height h can be a function of x and the boundary can be given a velocity. With 

all these considerations, it is quite obvious that it is likely to be an unsteady flow. Now 

we will consider the momentum equation, the x-component of the momentum equation is 

given by 
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In equation (1), xF   is the body force term per unit volume along the x direction. This 

body force term is very important because the body force itself can change the physics of 

the problem not the motion of the boundary. One can think of an electric field as a body 

force which can drive the flow and thus can alter the physics of the problem. Now we 

will make the scaling analysis of the various terms of equation (1). The term 
u

t





 is of 

the order of ~ c

c

u

t
 , the term 

u
u

x






 is of the order of ~

2

cu

L


. The term 

u
v

y






 is of 

the order of ~ 
0

c cv u

h


, the term 

p

x




 is of the order of ~ cp

L
 where cp  is the 

characteristic scale of pressure which is the pressure difference that is existing across x = 

0 and x = L. The term 
2

2

u

x





 is of the order of ~ 

2

cu

L


 and the term 

2

2

u

y





 is of the 

order of ~ 
2

0

cu

h


. Let us assume that the body force term xF   is of the order of ~ xcF . This 

scale xcF  is absolutely arbitrary because we do not know about the force; it could be 

electrical, magnetic or whatever (it could be anything). Now we focus on the time scale 

ct . In general, as we have discussed earlier, the time scale ct  can be either advective or 

diffusive or forcing timescale for an unsteady problem. But for a problem where there is 

no forced time dependence and diffusion is not that significant, it is mostly guided by the 

advective timescale. So, ct  becomes of the order of  ~ 
c

L

u
 and hence, both the terms 



c

c

u

t
  and 

u
u

x






 become of the same order ~ 

2

cu

L


. Now substituting the scale of the 

velocity 0~c c

h
v u

L
 in the term 

u
v

y






, its scale also becomes of the order of ~ 

2

cu

L


. 

So we find that all the three terms in the left hand side of the momentum equation (1) are 

essentially of the same order ~
2

cu

L


. Now we introduce the dimensionless variables as 

c

u
u

u


 ,  

c

v
v

v


 , 

x
x

L


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0

y
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
 , 

c

p
p

p


  and x

x

xc

F
F

F


 .  Till now we have discussed 

about the x-momentum equation. But we also have the y-momentum equation which may 

also be important sometimes. Typically, if we have a vertical motion or a vertical force, 

then the y-momentum equation will be very important. This is not like a classical channel 

flow where the y-momentum equation usually gives 0
p

y





. But in the present case it 

can give something more significant than this. Now we rewrite the x-momentum 

equation along with the dimensionless variables which is given in the following  
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Now we can make some ready observations. The first observation is that the term 
2

0

cu

h


 

is more important than the term 
2

cu

L


. This indicates the purpose of this kind of non-

dimensionalization. When we non-dimensionalize, we divide a particular dimensional 

variable with its corresponding reference dimension. But if the reference dimension 

happens to be of the order of that variable itself, then the ratio comes out to be of the 

order of 1. For example, here we have non-dimensionalized the variable v  as 
c

v
v

v


 . 

Since cv  is the corresponding scale of the velocity, this ratio becomes of the order of 1. 

But if we non-dimensionalized the variable v  as 
c

v
v

u


  that is also an acceptable form 

of non-dimensionalization. But this non-dimensionalization is not consistent with the 



scale of the problem and in that case there is no guarantee that the ratio 
c

v

u


 can be of the 

order of 1. So, here we have chosen the reference variables which are of the order of the 

physical scale of the problem. Once it is done, all these derivatives in equation (2) will 

be of the order of 1. Now to determine the importance of the individual terms of equation 

(2), we have to look into the coefficients that are associated with the derivatives because 

the derivatives are already of the order of 1. The ready conclusion that we can make is 

that out of the two terms 
2
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0

cu u

h y

 


 and 

2
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
 will dominate because 

0h  is 

much less than L. So in a most general physical situation we have the term 
2

2 2

cu u

L x
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negligible. For example, in case of low Reynolds number hydrodynamics we know 

intuitively that the terms like 
u

u
x






 and 

u
v

y






 are not important because these are 

the advective terms. The body force term xF   may be completely absent. Then, out of the 

two terms 
2

2 2

0
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
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2

2 2

cu u

L x

 


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 is important. If the term 

2

2 2

0

cu u

h y

 


 

is important, then there has to be something which can balance this term. In the presence 

case, it is the pressure gradient term cp p

L x




 which can balance this term 

2

2 2

0

cu u

h y

 


. From 

that we can conclude about the scale of the pressure gradient term when we equate the 

term cp p

L x




 with the term 

2

2 2

0

cu u

h y

 


. So, we can conclude that cp

L
~

2

0

cu

h


, or, 

2 2

0

~ ~c c
c

u L u
p

h L

 


 where we multiply both the numerator and the denominators by the 

factor L and use the definition 0h

L
  . In every problem, whenever there is no other 

effect, the pressure scale is guided in this way. Of course, we can have a pressure scale 

which may have some dependence on the advective term. But soon we will see that the 

dependence of the pressure scale on the advective term will be much lower order than the 

dependence of the pressure scale on the viscous term 
2

2 2

0

cu u

h y

 


. Once we work it out, we 

will realize the reason of it. So there will be other terms on which the scale of the scale 



of pressure can depend. But all these dependences are higher order dependences, the 

leading order dependence is represented by the viscous term 
2

2 2

0

cu u

h y

 


. There is a formal 

way to establish this. In the formal way of doing this, we take the parameter   because 

  is a small parameter. 

Then we expand the variable u  as 2

0 1 2u u u u      (this 
0u  is not the same 

0u  that was drawn in figure 1(i)). This is a power series of expansion, we expand the 

continuous function u  in a power series and this expansion can only be done if the 

parameter   is small. In the similar way we can expand the variable v  as 

2

0 1 2v v v v      and the variable p  as 2

0 1 2p p p p     . Then if we 

take the leading order extract, we will get the same 
cp , i.e. 

2

0

~ c
c

u L
p

h


. We know that 

the mathematicians sometimes do a work in a certain way just to save time. Engineers 

and Physicists tend to do the same work in a more intuitive way with less hard work and 

we are trying to do the same. We can of course put 2

0 1 2u u u u     , 

2

0 1 2v v v v      and 2

0 1 2p p p p      in the momentum equation and 

then separate the variables but the leading order effect will come through the viscous 

term. So, at the leading order, 
2 2

0

~ ~c c
c

u L u
p

h L

 


. From this scale we can understand that 

the pressure is quite strong because it scales with 
2

1


 where   is very small. So pressure 

happens to be a very important consideration in the lubrication theory. Now we multiply 

both sides of equation (2) by 
c

L

p
 and we get  
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By looking into all these terms of equation (3) without doing any calculation we can tell 

that there is one term other than the term 
p

x




 which is of the order of 1. It is the viscous 

term 
2

2 2

0

c

c

u L u

h p y

 



 because the scale of pressure cp  is chosen in such a way 



(
2

0

~ c
c

u L
p

h


) that this term balances the pressure gradient. For the other terms we have 

to do a little bit of algebra. Now,  
22 2 2
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where cu L


 is the Reynolds number based ( ReL

) on L and 0h

L
 . We have to keep in 

mind that, traditionally in lubrication theory, the Reynolds number is based on the axial 

length scale. The reason is that the axial length scale is usually fixed. The transverse 

length scale 0h   is also fixed but its physical length can vary across the length L. Now, 
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2
~c

c

u L

L p


 . Also, the body force term 
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L h hL
F F F F F F

p u L u 
   . Using the scales of the different terms, 

equation (3) can be rewritten as  
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2 2 0
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c

hu u u p u u
u v F F

t x y x x y u
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Clearly in the leading order, there is couple of terms which we can easily neglect. The 

terms which are of the order of 
2 , we can easily neglect them. In equation (4), all terms 

in the left hand side are of the order of 
2 ; also the viscous term 

2

2

u

x




 is of the order of 

2 . Here 
p

x




 and 

2

2

u

y




 are the leading order terms, i.e. of the order of 1. But we cannot 

comment on the body force term because we do not know about the body force term. We 

cannot rule this term; this may be important or may not be important and therefore we 

are not ruling it out. So at the leading order we can surely rule out the term 
2

2

u

x




. Also we 

can rule out the terms in the left hand side of equation (4) provided the Reynolds number 

is small. If the Reynolds number is abnormally large then even with the multiplication of 

the small parameter 
2  the product may become important. But in micro-scale flows, we 

are primarily considering the low Reynolds number hydrodynamics. So the terms which 

are multiplied by the product 2ReL   can be neglected. Then the x-momentum equation 



boils down to a simplified equation. That simplified equation is actually true only in the 

leading order, not for the whole term but for the leading order. The simplified form of 

the momentum equation is given below  

                                      
22

0

2
0 x xc

c

hp u
F F

x y u

 
    

 
                                                      (5) 

So we stop at this point for the time being and we will continue from this point in the 

next chapter where we will look into the y-momentum equation. The broad objective will 

be to find out a distribution of the pressure between these two confining boundaries 

because of the complex phenomenon that is going inside. We will derive this pressure 

distribution in the next chapter. 

 


