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Lecture – 36 

Stokes Flow past a Sphere (Contd.) 

 

In the previous chapter we have discussed about the derivation of the stream function the 

expression of which is given by 
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the stream function for low Reynolds number flow past a sphere is a pure mathematical 

expression but we require this expression to calculate the drag force. We will 

systematically see that how one can use this expression of the stream function to 

calculate the drag force. The steps are very logical and we start with obtaining the 

expressions of the velocity components 
rv  and v . So, using the expression of  , we get 
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 (where the factors like 2, r

2
 and sin  get cancelled from the 

numerator and the denominator). Similarly, we can get the expression of v , i.e. 
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 (where one sin  term get cancelled from the numerator and 

the denominator). So we have got very nice expressions of rv  and v . Now we need to 

think of the requirement for the drag force calculation. For drag force calculation, we 

require the stress distribution on the sphere. The stress has two components; one is the 

hydrostatic component, another one is the deviatoric component. For the hydrostatic 

component we have to find out the pressure distribution around the sphere. Now the 

question arises about how one can get the pressure distribution. To get the pressure 

distribution, we have to substitute the expressions of the velocities rv  and v  in the 

momentum equation because in the momentum equation we have both velocity as well 

as pressure gradient. Let us first write the r-momentum equation. These forms are very 



cumbersome for the polar co-ordinate system; so students should never try to remember 

these. Although these expressions are a part of the derivation that we are doing in the 

class lecture, in exam if it is required then it is usually provided; so students don’t need 

to memorize these expressions. The portions which are provided contain the momentum  

equations in the polar co-ordinate system. Now the r-component of the momentum 

equation is given by  

r-momentum:
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These forms are so cumbersome that even if we write by seeing there can be a mistake; 

there is no glory in memorizing these expressions. We will just discuss about the strategy 

because there is no need to waste time in calculating the individual terms. We have the 

expressions of 
rv  and v  and for the derivatives we need to differentiate either with 

respect to r or with respect to θ. Substituting the expressions of the velocities 
rv  and 

v along with their derivatives, the r-momentum equation gets remarkably simplified and 

we get the final form 
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with respect to r, we get 
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this constant, we have to apply appropriate condition. At the far stream, i.e. at r  ,  

the pressure is equal to the ambient pressure p
, so at r  , p p  and 

constant p . So, the final expression of the pressure distribution becomes 
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equation whether the resulting pressure distribution is same as that obtained from the r-

momentum equation. It should lead to the same expression of pressure; it is a cross-

check just to make sure that all the calculations are done correctly. The  -momentum 

equation is also equally cumbersome which is given in the following  
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If we write the momentum equations in the vector form, it is very compact and nice, it 

looks very elegant. But if we expand it and do the algebra, then we have to open up the 

vector form (this can be compared to bringing out of a human being; for a human being 

there is a very beautiful outside and there is a very ugly inside. That ugly inside opens up 

when we open up from the vector form to get the large algebric form).   

Here also we have the same strategy; we have to substitute the expressions of the 

velocity 
rv  and v  along with the derivatives and we get 
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Integrating both sides of this equation with respect to   we get the same expression of 

the pressure distribution which was obtained from the r-momentum equation where the 

integral of sin  will be equal to - cos . Once we know the pressure distribution we 

know about the hydrostatic stress distribution. Now we need to know about the 

deviatoric stress. For deviatoric stress we have to apply Newton’s law of viscosity. For 

this we need to obtain the expressions of the stress tensors r r  and r . According to the 

polar co-ordinate system, the stress tensors r r  and r  are defined as 2Dev r
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the expression of the velocity component 
rv  along with its derivative we get 
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. Now, the stress tensor r  has only deviatoric 

component; it does not have any hydrostatic component because it is shear stress. 

Substituting the expressions of the velocity components rv  and v  along with their 

derivatives we get 
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   . So, r r  is viscous normal stress and r  is 

viscous shear stress. As we have mentioned earlier, apart from the viscous shear stress, 

the viscosity can also give rise to viscous normal stress.  
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Now we have information about all parameters that are required for the calculation of the 

drag force. The drag force is clearly a function of r and θ because the stresses are 

functions of r and θ. To calculate the drag force, a differential element of thickness d  

is taken at an angle θ from the sphere of radius R (as shown in figure 1). The figure is 

drawn in the r-θ co-ordinate system where we take this element along the sphere. The 

normal stress that is acting on this differential element is Dev

r r r r p    while the shear 

stress is r . Now we need to focus on the drag force which by definition is the force in 

the direction of the relative flow. The relative flow is in the axial direction. So we have 

to resolve the forces in the direction of flow. Here we need to remember that the 

expressions r r  and r  are not forces but stresses. These stresses have to be multiplied 

with a suitable area to convert them to forces. The contribution of the normal stress in the 

drag force is given by  cosDev

r r p   which needs to be multiplied by the area 

2 sinR R d   . Similarly the contribution of the shear stress in the drag force is given 

by sinr  ; again multiplied by the area 2 sinR R d   . Here in the shear stress, 

negative sign is given because it is the backward direction while the flow is in the 

forward direction. So, the expression of the drag force is given by 
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sphere (i.e. at r = R) because we are calculating the drag force on the sphere. Now we 

have to fix the limit of the integration where the maximum value of the angle θ cannot be 

Figure 1. Stresses acting on a differential element of thickness d  which is a part of 

the sphere of radius  R. Figure is drawn in the r-θ co-ordinate system. 



equal to 2 . The reason is that we have chosen the element within the sphere in such a 

way that both of the bottom half and the top half are covered. So, the value of the angle θ 

will lie in between 0 to   (in this way the full sphere is covered) when we evaluate the 

definite integral for the calculation of the drag force. Substituting the expression of the 

pressure 
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expression of the drag force as 
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is equal to zero, it does not appear. As we have already discussed in the previous 

chapters, ignorance can be blessing sometimes. Some people have an idea that the 

viscous effect does not give rise to any normal stress, so they will not consider the term 

Dev

r r . Here luckily we have got the integral of 
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equal to zero. So even if there is any ignorance, that ignorance will not reflect in any 

error in the calculation of the drag force. One can easily tell the contribution of the 

second term cosp 
 by simply integrating it, but for better understanding one need to 

think it physically. This term comes from p
 which is a uniform pressure. Since it is a 

uniform pressure, if it is integrated over a spherical body the net effect will be zero. One 

can definitely check this upon integrating mathematically but this can be observed from 

the physical understanding. Then the expression of the drag force gets remarkably 

simplified and we have finally get the expression of the drag force as 
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we have used the identity 
2 2cos sin 1    (so here in this derivation algebra, 

geometry, and trigonometry all these things that we have learnt in the school level are 

appearing). The final form of the drag force is given by 
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Stokes law. This expression gives is the force exerted by the fluid on the sphere. Now 

according to Newton’s third law, the sphere exerts equal and opposite force on the fluid 

and that is how the fluid is dragged. So, one of the key issues in the Stokes law is that we 



have neglected the inertial term. This is one of the major assumptions otherwise it is a 

very classical expression. We have to check the validity of this expression. We have 

raised a question and we make a short discussion on the validity of the Stokes law. So 

the validity is dependent on the Reynolds number and instead of looking into the 

Reynolds number we look into the expressions of the inertia force and the viscous force. 

For the inertia force, we can just take one of the terms to get an idea of the order of the 

inertia force. The forces which are coming in the Navier-Stokes equation are all forces 

per unit volume. The scale of the inertia force is given by ~ r
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inertial terms in the Navier-Stokes equation). If we look into the expressions of the 

velocity components rv  and v , rv  at the leading order is equal to u  while v  at the  
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have to find the scale of the viscous force per unit volume which is given by ~ 
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This is one of the order of magnitude, we can also use r  instead of r r . If we 

remember the index notation in the Cartesian co-ordinate system, the stress tensor is 

given by 
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Reynolds number based on the radius R (here both the numerator and the denominator 

are multiplied by the factor R for the ease of representation). What we can conclude from 

this ratio is that even if the Reynolds number is small the inertia force may be much 

important compared to the viscous force if r  is much larger than R which occurs far 



away from the sphere. One can argue that since we are calculating the drag force on the 

sphere then why there is a question about the importance of what is occurring at far away 

from the sphere. This is a wrong argument because the velocity profile which we have 

derived is based on the assumption that everywhere the inertial forces are zero. But if far 

away from the sphere, the inertial forces are non-zero, then the velocity profile will be 

different and therefore, the calculations of the stress tensors r r  and r  will be different. 

So, although the calculation is on the surface of the sphere, it is on the basis of the 

velocity profile which is derived from the consideration of zero inertial force. This 

matter was first highlighted by one mathematician named Ossen who gave correction to 

the Stokes formula. There are many corrections to the Stokes law in the research 

literature. In the present course it is not very important that we have to make ourselves 

familiar with all those corrections. But we have to realize at least that even the Stokes 

law has its own limitations. So other than the major assumptions of unbounded flow and 

Newtonian fluid, the consideration of zero inertial force becomes questionable. If we 

have a situation where there is a correction in the velocity profile which depends on the 

inertial force; in that situation the inertial force cannot be neglected. So far we have 

studied mainly a collection of steady flow with low Reynolds number problems. But 

there are many interesting low Reynolds number problems for unsteady flows. We will 

look into those low Reynolds number unsteady flow problems in our subsequent chapters 

which are very important in microfluidic applications. 

 

 


