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Lecture - 35 

Stokes Flow past a Sphere 

(Contd.) 

 

In the present chapter we look into the motion of a sphere in an unbounded flow with the 

help of a consideration in the previous chapter where we first started with a description 

in the Cartesian co-ordinate system and then we graduated into the polar co-ordinate 

system. At the end of the previous chapter we defined the two components of the 

velocity 
rv  and v  in terms of the velocity u  at a distance far away from the sphere,  

i.e. cosrv u   and sinv u    at r  .  
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Now we have to obtain the Stokes stream function   far away from the sphere which 

satisfies the equation  2 2 0E E   . To do that we express the two components of 

velocity rv  and v  in terms of  , i.e. 
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expressions are nothing but the parametric form that satisfies the incompressibility 

condition in the polar co-ordinate system, nothing more than that. This is true even if r is 

not tending towards infinity, but at r  , we have the expressions cosrv u   and 

sinv u   . If we equate the two expressions of rv , i.e. cosrv u   and 
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Figure 1. (i) Flow past a sphere of radius R where fluid is flowing with a velocity u . 

(ii) The position of a point in a polar co-ordinate system, (iii) the components of the 

free stream velocity u .    



substitute sin z  , then we get cos d dz    and dz  becomes equal to 21

2
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this, the expression of   becomes  2 2
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u r f r    where  1f r  is an 

integration constant. Since we are doing the partial integration with respect to  , the 

constant of integration will be a function of r which is like a constant. I the case of partial 

integration, when we are integration with respect to the variable  , any other variable is 

treated like a constant. Now we equate the two expressions of the velocity component 

v , i.e. sinv u    and 
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Integrating both sides with respect to r we get, 

 2 2 2
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u r dr u r f       . It is not surprising that the expression of   

coming out form the integrations of the velocity profile 
rv  and v  is supposed to be same 

because no matter how we derive it from 
rv  and v , the expression of   should be 

consistent. Now comparing the two results of integration of 
rv  and v  we can see that in 

one case there is a term function of   while in the other case there is a term function of 

r. In order to make the expression of   consistent, these two functions must be equal to 

each other. Since one is function of r and the other is function of  , they must be equal 

to a constant, i.e.    1 2 constantf r f   . Otherwise the resulting expressions of   

will not be the same. Now we need to fix the value of the constant which can be chosen 

arbitrarily. So for all practical purposes, we can write the expression of   at the far 

stream as 
2 21
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2
u r   . The value of the constant may be set to zero as a 

reference. It can be any constant not necessarily zero; but for algebraic convenience we 

can set it to zero. So we have got the information for   at the far stream at r  . 

Therefore, the question arises about what will be the value of   if r is not tending 

towards infinity. Typically r is small if it is close to the surface of the sphere. As we go 

from the surface of the sphere to far away from the sphere, the r dependence changes. 

Because it is the radial co-ordinate r that demarcates whether it is in the vicinity of the 

sphere or it is far away from the sphere. The  -dependence can be very similar whether 

it is close to the surface of the sphere or far away from the sphere. So we can write that 

for a finite r, the  -dependence is 
2sin    and   2sinf r  . The value of the function  



 f r  is equal to 21

2
u r  if r is tending towards infinity, i.e.   21

2
f r u r  at r  . 

But the value of the function  f r  will be something else for a finite r. So this form 

  2sinf r   is a separation of variables essentially where the one part is a function of r 

only while the other part is a function of   only. If one looks into the mathematics book, 

they will start the solution from this particular step. But there should be a physical basis 

of why we are choosing this particular form and that is very important for our conceptual 

understanding. So the reason of choosing this particular form is clarified. Now we 

calculate the operator 2E . From definition, the 2E  operator is given by 
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. Since,   is given by the expression   2sinf r  , 
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numerator and the denominator and we get 2 2
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 2 2 0E E    essentially boils down to  
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This equation has a solution where g is of the form of nr . In fact the function f  is in the 

form of nr , we start with the function f and we move into the function g. So both f and g 

are of the form of nr  (where the value of n needs to be determined). Let nf Ar , so, the 

first derivative 1nf Anr    and the second derivative   21 nf An n r     and 
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be equal to B, i.e.  1 2A n n B     . Now we evaluate the expression 
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    1 2 2 3 2 0n n n n            . This is a multiplication of two quadratic 

expressions of n which means that there will be four roots. Now expanding one of the 

two terms  1 2n n   we get the result 
2 2n n   which can be written as 
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2 2n n   is factorized into the products of  1n  and  2n . Similarly, we expand the 

other term   2 3 2n n    to get the result 2 5 4n n   which can be written as 
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expression 2 5 4n n   is factorized into the products of  1n  and  4n . In the school 

level (may be in class 7 or class 8) we learnt about the factorization; at that time we 

could not realize that for a glorified thing like the Stokes flow past a sphere this 

factorization can be required (but in reality we require this). So, the expression 
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So, n is equal to 1, 1,2 and 4n   . We use the general form of f , i.e. nf c r . Because 

of the linearity of the solutions for all values of n, they should be linearly superimposed 

to get the general solution. So, the general solution using all values of n is given by 
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the appropriate boundary conditions. In order to understand the boundary conditions, let 

us consider figure 1 (i) where shows the flow past a sphere of radius R. Before writing 

any boundary condition mathematically it is very important to understand the physical 

picture of the boundary condition. Then only we will never make a mistake of writing 

the boundary conditions. At the surface of the sphere there are two important 

considerations. One of them is a pure kinematic consideration that fluid cannot penetrate 

through the sphere which is called as no-penetration boundary condition. So, at r R , 



0rv  ; first we will write in terms of velocity and then we will convert it in terms of the 

stream function. Also, at r R , 0v   because of the no-slip boundary condition. Now, 

at r   the stream function should be such that it become equal to what we have 

derived earlier, i.e. at r  , 2 21
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u r  . In fluid mechanics, there is a language  

(like in everything there is a grammar); this language r  , 2 21
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as the far stream boundary condition. Sometimes people do not write it explicitly, but far 

stream boundary condition means it should match with what happens at the far stream 

(whatever solution that we are coming up, it should match with that at the far stream). 

Now what is left is to convert the boundary conditions of velocity in terms of the stream 

function. No penetration boundary condition means that the flow is always tangent to the 

surface of the sphere but there is no flow normal to the surface of the boundary. This is 

nothing but the definition of a streamline where we always have a flow tangent to the 

streamline but there is no flow normal to the streamline. Since there is no flow normal to 

the surface, this acts as a streamline which by definition is having a constant value of 

stream function. So   is equal to a constant over the surface of the sphere; we can take 

the value of the constant arbitrarily but we take it as zero for simplicity. So, this no-

penetration boundary condition becomes equivalent to 0f   at r R . In the Cartesian 

co-ordinate system, the velocity u  is defined in terms of the derivative of   with respect 

to y and here in the polar co-ordinate system, v  is defined as the derivative of   with 

respect to r. The derivative of   with respect to r is nothing but the implication of 

0f   . So the no-slip boundary condition results 0f    at r R . So the three boundary 

conditions are at (i) r R , 0f  ; (ii) at r R , 0f    and (iii) at r  , 2sinf   

where 
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one can obviously go through the algebric details to check whether everything is done 

properly or not. The final expression of   is given by 
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In principle, the stream function is everything because once we know the expression of 

the stream function of the problem we can obtain the velocity distribution since we have 

the expressions for velocity as a function of the stream function. Now the end objective 

will be to calculate the drag force on the sphere. In our next chapter we will see that 

starting from the expression of the stream function how one can calculate the drag force 

on the sphere. But we need to remember that the stream function   is the most 

fundamental thing because it gives the velocity field. In fluid mechanics, if we have the 



velocity field we can get all other derived parameters from the velocity field itself and 

that part will be taken up in the next chapter.  

 


