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Lecture – 33 

Potential Flow (Contd.) 

In the previous chapter we have discussed about a general theorem which can enable us 

to calculate the lift force and the drag force because of a potential flow around a closed 

contour. That theorem is known as the Blasius force theorem. In the present chapter, we 

will try to derive the Blasius force theorem and we will see that by considering the 

special case of flow past a circular cylinder with rotation how the Blasius force theorem 

can be used to calculate the lift force and the drag force. 
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Let us consider that we have an arbitrary shaped body and we have a potential flow past 

this body. We can take a small element ‘dl’ and on that small element we have a pressure 

p which is perpendicular to the element. Let us say that this pressure p makes an angle α 

with the horizontal line along which this incipient flow is taking place. The velocity u  

is coming from the far stream. Now if we consider the component ‘dl’, then it will have a 

component ‘dx’ along the x direction and component ‘dy’ along the y direction. The 

direction of the pressure p is such that it makes an angle α with ‘dx’. The horizontal 

component of the force is DdF  and the vertical component of the force is LdF . The 

horizontal component is the drag force and the vertical component is the lift force. The 

horizontal component of the force corresponding to pressure is given by 

cosDdF p dl  . Because of the direction of the pressure, the horizontal component is 

in the opposite direction of u  and therefore a minus sign has been given in the 

expression of DdF . Similarly, the vertical component is given by sinLdF p dl . From 

Figure 1. Flow past a body of arbitrary shape where u  is the far stream velocity. ‘dl’ 

is differential small element on which the pressure p is acting. The element ‘dl’ is 

resolved into two components ‘dx’ and ‘dy’ on the right hand side of the figure. 



the figure one can understand that cos dl  is nothing but ‘dy’ and sin dl  is nothing but 

‘dx’. So we get 
DdF pdy   and 

LdF pdx  from which we can calculate 
D LdF i dF  as 

 D LdF i dF pdy i pdx i p dx i dy        using 
2 1i   . We form this complex 

quantity 
D LdF i dF  in which we absorb both the drag force and the lift force. 

Now dx i dy  is the complex conjugate of dz = x + i y which we define as dz*, so, 

*dz dx i dy  . We need to remember that we have taken an arbitrary shaped body, not 

necessarily a circular cylinder. So the contour integral of 
D LdF i dF  can be written as 

   D LdF i dF i p dx i dy     . Now it is noteworthy that all the assumptions of flow 

past circular cylinder remain valid here also and we can write 2 21 1

2 2
p u p V     . 

Here, 
2V  is nothing but equal to 

2 2u v ; so,   2 2 2V u v u iv u iv     . We will use 

the expression of p from the equation 2 21 1

2 2
p u p V      and then we will 

substitute it in the contour integral  i p dx i dy  . We get, 

      21 1

2 2
i p dx i dy i p u u i v u i v dx i dy  

 
         

 
  . One obvious 

thing in this integral is that integral of 
21

2
p u   (which is a constant) over a closed 

contour is equal to zero. It can be physically felt that if we have a uniform pressure 

distribution around a closed body, the net force because of the uniform pressure 

distribution is equal to zero. So the 
21

2
p u   part will not contribute to the 

integration and the contour integral  i p dx i dy   becomes 

     
2

i
i p dx i dy u i v u i v dx i dy


       . Now we calculate the expression of  

  u iv dx i dy  .   u iv dx i dy u dx ui dy vi dx vdy       using 
2 1i   , so, it 

becomes     u iv dx i dy u dx vdy i vdx u dy      . Now question arises about 

whether we can tell the corresponding expression of   u iv dx i dy   on the surface of 

the body. The surface of the body is a streamline and streamline is defined by the 

equation 
dx dy

u v
 . Therefore, 0v dx u dy   on the surface of the body and we get  



  u iv dx i dy u dx vdy    . Just for the sake of interest, we calculate the expression 

  u iv dx i dy  , which is given by   u iv dx i dy u dx ui dy vi dx vdy      , or, 

    u iv dx i dy u dx vdy i u dy vdx      . u dy v dx  is equal to zero on the 

surface and therefore,   u iv dx i dy u dx vdy    . Therefore, on a streamline, the 

expressions   u iv dx i dy   and   u iv dx i dy   are the same. Hence, we replace 

  u iv dx i dy   of the contour integral with   u iv dx i dy   and the contour 

integral becomes      
2

2

i
i p dx i dy u i v dx i dy


      . Therefore, the net result 

is the following expression    
2

2

2 2
D L

i i dF
F i F u i v dx i dy dz

dz

   
      

 
  . Here 

we have substituted 
dF

u i v
dz

   (using the definition of the complex potential function) 

and dz dx i dy  . So, if we know the complex potential function, just by using the 

derivative of the complex potential function we can calculate the lift force and the drag 

force immediately. This highlights the power of this complex analysis. So, 

2

2
D L

i dF
F i F dz

dz

  
   

 
  is called as the Blasius force theorem. Now let us illustrate 

the use of this theorem through the example of flow past a circular cylinder with 

circulation or with rotation. 

In this case, the complex potential function F is given by 

 
2

ln
2

u R i
F u z z a ib

z 





     , then  

2

2 2

u RdF i
u

dz z z





   . From this we get, 

2 2 4 2 2 22 2
2

4 2 2 2 3

2 2 2

4 2 2

u R u R u i u R idF i
u

dz z z z z z  
   



  
      

 
 by using the expansion of 

(a+b+c)
2
. So we can see that 

2
dF

dz

 
 
 

 is a complex number which can be represented as a 

power series of z. In general, this is the scenario for a function which is an arbitrary 

complex function. Now let us write the function F.  

We start from the extreme negative coefficient to move towards the extreme positive 

coefficients and we write only the intermediate coefficients as 



           
2 1 0 1 2

2 1 0 1 2.... ....f z c z a c z a c z a c z a c z a
 

             . In this 

way it does from one extreme on the left hand side to the other extreme on the right hand 

side. This is also called as Laurent series which is a way of writing a series expansion of 

a complex function. So the present example is very similar to this Laurent series 

expansion with 0a  . Interestingly, the function in the Laurent series is singular at 

z a . z a  is called as a point of singularity, because in the denominator of the terms 

of this expansion, there will be term like z a  and at z a , it will be of the form of 
1

0
. 

So, in the general form of expansion in the Laurent series, z a  is the point of 

singularity and in the present example 0a   is the point of singularity. Let us think of 

calculating the integral 
dz

z
. We have iz r e  ; we are calculating this integral on the 

surface of the cylinder, so r R  and we are varying  . So, iz Re   and idz Rie d   

and the integral becomes 
2

0
2

i

i

dz Ri e d
i

z Re







   . So we can generalize this by 

saying that if there is a coefficient 1c , then the integral will be equal to 12 c  . This is 

called as Residue theorem. Although this is considered as a theorem, it is very intuitive 

and easy to derive. Using this theorem, the corresponding integrals of all other 

coefficients will be equal to zero. We can show it very easily. If we calculate the integral 

n

dz

z
, we will see that except for the value of 1n  , all other integrals will be non-

existent. So, what will matter is the coefficient of  
1

z
. The coefficient of  

1

z
 in the 

expression of 

2 2 4 2 2 22 2
2

4 2 2 2 3

2 2 2

4 2 2

u R u R u i u R idF i
u

dz z z z z z  
   



  
      

 
 is 

2

2

u i


 

 . We now recall the expression of D LF i F  which is given by  

2

2
D L

i dF
F i F dz

dz

  
   

 
 . Now we will evaluate the integral using the aforesaid 

theorem to get 
2

2
2 2

D L

u ii
F i F i i u


 






 
      

 
. If we compare the real part 

and the imaginary part from the both sides we will see that the drag force is still zero but 

the lift force is equal to u   . This is known as Kutta-Zhukhovski theorem. 



So 
LF u     is the lift force. We can see very nicely that, up to the 

step

2

2
D L

i dF
F i F dz

dz

  
   

 
 , we can calculate the lift force on any shape. The present 

example is of course a special case of flow past a circular cylinder but it can give us a 

very nice overview of the physics associated in the calculation of the lift force. We can 

clearly see that if   is anti-clockwise, then 
LF  is negative and if   is negative (i.e. if 

  is clockwise), then 
LF  is positive. It means that if there is an object which is rotating 

in a clockwise fashion it will experience a lift force upwards. If it is rotating in an 

anticlockwise direction, it will be a negative lift force; it will be experiencing a force 

downwards. So we have understood, at least in principle, the procedure to model the 

flow past an object of a circular shape and the resulting calculation of the lift force and 

the drag force.   

Now the question is that, in reality, all the objects are not circular or cylindrical. So, 

there can be situations when we have an object which is of a different shape. In that case 

question arises about how we can use the result of the flow past a circular cylinder to 

extrapolate that to the situation of flow past something which is of more complex shape 

and perhaps the shape which is more interested for aerodynamic calculations. For that, 

we use something which is called as conformal mapping. Now we will discuss about a 

little bit of introduction of conformal mapping and an example of that.  

Conformal mapping in principle is nothing but a mapping of an analytic function from 

one complex plane to another complex plane. We will now provide an example of a 

conformal mapping. The objective is pretty clear that from a circular shape, we want to 

map to a shape which is perhaps deviating from circular but more practically relevant. 

There is a complex plane  ; from there we transform it to a complex plane z as 

2b
z 


  . Let us consider that in   plane, we have a circle of radius b. In that case 

 will be equal to ibe  , i.e. ibe   . Using ibe    we get i iz be be   . Now, we 

know that cos sinie i     and cos sinie i     ; we use these expressions to get 

   cos sin cos sin 2 cosz b i b i b         . Now if we take the x axis, then the 

corresponding z will be equal to 2b  which is basically only the real component since 

there is no imaginary component. When   is equal to  , then the corresponding z will 



be equal to 2b . In this way the transformation transforms the circle to a slender piece. 

Here lies the beauty of the conformal mapping. So, if we now want to understand the 

flow past a slender piece, then we can model that as a flow past a circular cylinder of 

radius b in the  plane and then apply the transformation where   is transformed into z.  

0

2b2b
 

 

 

We will provide another example before ending the discussion of this chapter. In this 

example we consider the radius of the circle (a) to be greater than b. In the previous 

example, the radius was equal to b. If the radius a is greater than b, then iae   . Using 

the expression iae   , we get the expression of z as 

   
2 2 2 2

cos sin cos sin cos sini ib b b b
z ae e a i i a i a

a a a a

           
            

   

. Comparing this expression of z with z x i y   we get 
2

cos
b

x a
a


 

  
 

 and 

2

sin
b

y a
a


 

  
 

. We can eliminate   by noting that 
2 2cos sin 1   . Then we get 

the equation 
2 2

2 2
2 2

1
x y

b b
a a

a a

 
   

    
   

  which represents an ellipse.   

So, by this conformal mapping, we can first calculate the flow past a circular cylinder 

and then we can apply this conformal mapping to predict the flow behavior past an 

elliptic cylinder. In this way, 
2b

z 


   is such a beautiful transformation that using this 

kind of transformation by choosing different values of the radius of the circle, we can 

actually transform the flow past a circular cylinder to a flow past an object which 

apparently is very much different in shape as compared to a circular cylinder.  This is the 

reason why the flow past a circular cylinder is so fundamental that once we have a clear 

Figure 2. Transformation of a circle to a slender piece where the origin is located at 

(0,0). The two extremes are at a distance 2b  on both sides of the origin which 

correspond to 0   and    respectively.  



idea of flow past a circular cylinder, we can apply a transformation and analyze problems 

of more complex geometries. So, overall, we have discussed about various aspects of 

potential flow. Starting from simple elementary flows we have constructed flow past a 

circular cylinder. With rotation we have seen the method to calculate the lift force and 

the drag force and then finally we have seen the procedure to generate bodies of more 

complex shapes from the consideration of circular cylinder or a circle in one particular 

plane by using conformal mapping. In the next chapter we will discuss on a different 

topic.  

 

 


