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Lecture – 32 

Potential Flow (Contd.) 

In the previous chapter we have discussed about a simulated potential flow past a 

circular cylinder by considering a uniform flow and a doublet superimposed together. 

We continue with that in the present chapter. We try to get a sketch of the streamlines 

around the body after which we will calculate the pressure distribution around the body. 

To calculate the pressure distribution on the surface of the cylinder is very critical. The 

reason is that as per the theory of boundary layer, the pressure distribution outside the 

boundary layer is imposed on the fluid on the boundary layer itself. So if we calculate the 

pressure distribution from potential flow consideration; that pressure distribution can be 

considered to be valid on a fluid where boundary layer assumptions are justified even for 

a case when the viscous effects are present. Although the calculation of the pressure 

distribution is based on potential flow consideration, this will remain valid. This is one of 

the big applications of the potential flow. Of course, we can use the pressure distribution 

up to an extent till we have the boundary layer separation. If we have the boundary layer 

separation then we cannot use it. So, first of all, we assume that it is a potential flow. If 

the density of the fluid is constant and there is no great difference in the elevation then 

we have 21
constant

2
p v  . The assumptions behind this equation 

21
constant

2
p v   are steady flow, constant density flow and irrotational flow. There 

is also the negligible change in the potential energy.  

R
,p u 

 

 
Figure 1. Streamlines for flow past a circular cylinder of radius R. 



The pressure at the far stream is given by p
 and the velocity at the far stream is given 

by u
, so,  2 21 1

2 2
p u p v     . The resultant 2v  is equal to 2 2

rv v  and we get  

 2 2 21 1

2 2
rp u p v v      . This needs to be evaluated on the surface of the 

cylinder (i.e. at r R ), so,  2 2 21 1

2 2
r r R

p u p v v   
    . In the present example 

(corresponding to figure 1), at the surface of the cylinder 0rv   and the expression of v  

is given by 2 sinv u   . So the right hand side of the equation 

 2 2 21 1

2 2
r r R

p u p v v   
     becomes equal to  2 21

4 sin
2

p u  . In fluid 

mechanics, a non-dimensional pressure is defined as the coefficient of pressure pC  

which is given by 
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
 . In the present example, pC  becomes 

21 4sinpC   . 
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Now we plot the variation of pC  as a function of   in figure 2. At 0  , pC  is equal to 

1; at 2  , pC  is equal to - 3 and at   , pC  is equal to 1. Through the three points 

(i.e. 0  , 2   and   ), we draw a sinusoidal curve (shown by the red-colored 

solid line) as depicted in figure 2. Now question arises about the practical scenario. Let 

us think of the corresponding practical scenario. If the value of the Reynolds number 

associated with the flow is 10
5
, then the variation of pC  with   closely follows the 

sinusoidal variation up to 2  , then it approaches to a constant value at higher  . 

Figure 2. Variation of 
pC  as a function of   as shown by the sinusoidal curve (red-

colored solid line). Blue-colored solid line represents the practical scenario 

evaluated at 510Re  .  



The curve corresponding to 510Re   is shown by the blue-colored solid line in the 

figure. The reason of the variation of pC  approaching a constant value beyond 2   

is that we have a boundary layer separation occurring at 2  . After this point, there 

is a wake where we have almost a constant pressure distribution. So, up to the point 

where the boundary layers are separated, we observe that the pressure distribution can be 

successfully reproduced by the potential flow solutions. So we should not think that the 

potential theory is absolutely hypothetical and it has no relationship with the physical 

reality.    

So we have seen the procedure to model a flow past a circular cylinder. Now we focus 

on the calculation of the drag force on the cylinder which is a matter of great engineering 

importance. Because of the symmetry of the flow, we can see that the drag force will be 

equal to zero. Whatever is the pressure distribution from the left hand side of the body 

(corresponding to figure 1), it will be the same from the right hand side of the body. So 

the horizontal components will cancel each other and that will make the drag force equal 

to zero. But in reality, if we subject a cylinder to a flow; there will be a drag force. 

Therefore, it is very important to pinpoint about that particular drag force. To get into 

that, we have to introduce something or some feature in addition to the uniform flow and 

the doublet to introduce that drag force on a cylinder. That particular thing is nothing but 

the viscous effect. In this analysis the viscous effect was not considered; it was 

considered to be a paradox and that was called as D’Alembert’s paradox. It tells that 

although there is a fluid and a body, the net drag force is equal to zero. In reality, these 

theoretical calculations gave zero drag force not because of any paradox but because of 

the fact that the viscous effects were not considered. When the viscous effects are 

considered, we can see that the pressure distribution on the left hand side is different 

from the pressure distribution on the right hand side and that will give rise to an 

asymmetry (this asymmetry is also evident in the variation of 
pC  with  ). Next, the 

question arises about the lift force and the drag force. 

For this lift force and the drag force, we recapitulate the earlier discussions. If we have a 

body of any arbitrary shape, if we have the resultant force; then we can decompose the 

resultant force into two parts. One part will be along the direction of flow and another 

part will be perpendicular to the direction of flow. In the plane we can resolve it into 

these two components. If it is a three-dimensional flow, we can also have a lateral thrust 



component. All these components are very important because in the aerodynamic 

situations (which tells us that how the aircrafts fly), things depend on significant control 

over the lift force and the drag force and also the lateral side force. The two components 

of the resultant force are 
DF  and 

LF  where 
DF  is the horizontal component or the drag 

force and 
LF  is the transverse component or the lift force respectively. Without the 

viscous effect, we cannot generate a drag force in this case because the symmetry in the 

pressure distribution cannot be broken. So the next golden question appears that without 

the viscous force whether we can generate the lift force or not. To examine that, one can 

refer to a very common practical experiment. For this, let us consider a tennis ball or a 

cricket ball (i.e. a body of spherical shape). So, in the fluid where the viscous effects are 

even negligible, if we approximate the cylinder or the sphere (corresponding to the shape 

of the ball); if we spin it clockwise then we find that there is a tendency of it to go up or 

down depending on the direction of this spin. This is called as top spin in a sports ball 

and this is due to an effect called as Magnus effect. So question arises about this effect 

which can give rise to a lift force where everything is absolutely symmetric. Intuitively 

we do not expect a lift force. In fact, in the present example, we do not get a lift force.  

Just like the drag force where the two horizontal components from the left hand side and 

the right hand side cancel each other, in case of lift force, the two vertical components 

from the top and the bottom cancel each other. But if we bring in a rotation, rotation can 

break the symmetry not for the drag force but for the lift force. So, rotation in the 

paradigm of a potential flow is a type of irrotational or free vortex (as discussed in the 

kinematics chapter). Now we will consider a rotation and to bring in a rotation, the 

natural choice is a particular type of flow which is a free vortex flow. We cannot bring in 

a forced vortex flow in the picture here because that is not an irrotational flow and we are 

talking about the irrotational flow here. So, next we will study our next example which is 

vortex. Although we say it vortex, this is actually irrotational vortex; we have to specify 

this very clearly that it is irrotational or free vortex. 

Free vortex is defined as 
c

v
r

    and 0rv  . So the question appears about the 

corresponding complex potential function. That is the question because we have to 

superimpose this with the uniform flow and doublet to give a rotation to the circular 

cylinder. We have   i

r

dF
v i v e

dz




  ; for a free vortex flow it becomes 



i

dF i c i c

dz r e z
    . Now if we integrate it with respect to z, we get lnF i c z   where 

c is an arbitrary constant. We should relate c with the strength of the rotation which is 

also called the circulation. The circulation    is defined as the contour integral of v dl  

over a closed path, i.e. v dl   . In the present example, it becomes 
2

0
v r d

 








   . 

Here v c r   and dl r d , so r gets cancelled from the numerator and the 

denominator; we get rid of the singularity and we finally get 2 c   or, 
2

c



 . 

Substituting 
2

c



  in the expression of 

dF

dz
, we get 

2

dF i

dz z


   and similarly, 

ln
2

i
F z




  . When   is positive it indicates the anti-clockwise rotation. The minus 

sign is already there in the expression of F, if it is negative it shows anti-clockwise 

rotation. If it is positive it shows clockwise rotation. We have to keep this in mind 

because we have to physically interpret some of the results.   

Now we will come to the question that what will be result of the superposition of 

uniform flow, doublet and free vortex. The combination of uniform flow and doublet is 

physically representative of a flow past a circular cylinder when the cylinder is not 

rotating. The consideration of free vortex flow adds a rotation to the cylinder. So this 

physically mimics the potential flow past a rotating circular cylinder. In the present case, 

the complex potential function is the combination of uniform flow along x axis u z
, 

doublet 
m

z
 and free vortex ln

2

i
z




 , so, ln

2

m i
F u z z

z 



   . We have already 

seen that 2m u R  to represent the flow past a circular cylinder of radius R, so, 

2

ln
2

u R i
F u z z

z 





   . Now with introduction of uniform flow and doublet, we 

have ensured that there is no penetration boundary condition at the surface of the 

cylinder. But with the introduction of free vortex flow, this is no more assured.  

We can assure this by adding a constant a ib  to the expression of the complex 

potential function F such that it becomes 
2

ln
2

u R i
F u z z a ib

z 





     . In that 



case we can choose ‘a’ and ‘b’ as per our freedom. This a ib  is just a constant and 

therefore it will not reflect in terms of velocity. It will just alter the values of the stream 

function and the velocity potential but not their derivatives. Since a ib  is a constant 

and velocities are derivatives of stream function and velocity potential, it will not alter 

the velocity. But it will allow us to adjust the velocity in such a way that the radial 

component of velocity is zero on the surface of the body.   

Now substituting iz r e   in the expression of the complex potential function F we get 

2

ln
2 2

i iu R i
F u r e e r a ib

r

  
 




 
       where  ln ln lniz r e r i     and 

2 1i    have been used. We can now separate the real part and the imaginary part. The 

real part of F is given by 
2

cos
2

u R
u r a

r
 






  
   

 
 and the imaginary part is given 

by 
2

sin sin ln
2

u R
u r r b

r
 







   . So, the complex potential F can be represented 

as
2 2

cos sin sin ln
2 2

u R u R
F u r a i u r r b

r r
   

 
 

 

     
           

    
. Again 

from definition, we know that F i  , so, 
2

cos
2

u R
u r a

r
 






  
     

 
 and 

2

sin sin ln
2

u R
u r r b

r
  







    . So, to set up a no-penetration boundary 

condition with a reference streamline on the surface of the cylinder we must have 0   

at r R . 0   at r R  means that  sin ln 0
2

u R u R R b 


 


     . The first 

part  sinu R u R    was already zero for the consideration of uniform flow and 

doublet. So we can set b as ln
2

b R



 . In this way we can model the consideration of 

uniform flow, doublet and free vortex with the particular choice of ‘b’ with an arbitrary 

choice of ‘a’. For ‘a’, we can make a choice arbitrarily because although we have a 

constraint on the steam function we do not have a constraint on the velocity potential. 

Constraint on the stream function is also up to us. We may choose of course a non-zero 



stream function on the surface of the body. There is nothing wrong with it but 

customarily we choose it to be equal to zero otherwise that brings in an extra constraint.   

So the potential flow past a rotating circular cylinder can be represented by the generic 

form 
2

ln
2

u R i
F u z z a ib

z 





     . Of course, the matter of primary interest is to 

see the velocity distribution. But a matter of more intense primary interest is to see the 

lift force and the drag force. The reason is that the lift force and the drag force are the 

things which are matter of concern in engineering. We can calculate these forces using a 

very powerful theorem called as Blasius force theorem. It can even take a body of any 

arbitrary shape as long as the body has a closed contour. In the next chapter we will 

discuss the steps to find out the lift force and the drag force on any arbitrary shaped body 

for a given complex potential using the Blasius force theorem. 

 


