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Lecture – 31 

Potential Flow (Contd.) 

In the previous chapter we have discussed about the doublet and we will continue this in 

the present chapter. If we recall from the previous chapter, the complex potential 

function F for the doublet is given by 
m

F
z

 . From definition, the complex potential 

function F is given by F i   and the derivative of F is written as 
dF

u i v
dz

  . In 

terms of r-θ coordinate, the derivative 
dF

dz
 can be written as   i

r

dF
v i v e
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


   (we 

have derived this expression in the previous chapter). So, the problem in terms of 

complex analysis is to separate this expression into real and imaginary parts. Real part 

represents the velocity potential and imaginary part represents the stream function. Using 

z x i y   the expression 
m

F
z

  is rewritten as 
m

F
x i y




. Now we need to make the 

denominator real; to do this we have to multiply both the numerator and the denominator 

by x i y . Then we get 
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 where the denominator becomes equal to 

2 2x y  because 2 1i   , so, 
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. Comparing the expressions of F i   

and 
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 we get 
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 and 
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x y



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
. Now let us try to draw 

constant   lines and constant   lines. To draw constant   lines we need to obtain 

the corresponding equation. The equation corresponding to constant   is given by 

2 2 0
m x

x y  


. This equation can be rewritten as 
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. This equation is as good as the form  
2 2 2x a y r    which 

represents the equation of a circle at centre (a,0) and radius r. So the equation 
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 is the equation of a circle with centre ,0
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 and radius 
m


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We will now try to make a sketch of this equation. 
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The value of   can be both positive and negative. Let us take one particular point for 

which the x-coordinate is 
m


 and the y-coordinate is 0. Also the radius of the circle is 

equal to 
m


. The corresponding curve is shown by the small circle on the right hand side 

of figure 1. Now if the center of the circle is shifted on the right hand side, it will also 

result a bigger circle. These circles represent the scenario for positive value of  . For 

negative values of  , the circles will be on the left side of the figure. These circles will 

be the mirror images with respect to the y axis. All these circles (black-colored) represent 

constant   lines. In order to ease the understanding, we will now draw constant   

lines with a different color.  

To draw constant   lines, the corresponding equation for constant   is given by 
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or, 
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. This represents the equation of a circle with centre  

Figure 1. The pictorial depiction of constant   lines which represent the equation 

of circle with centre ,0
m 

 
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 and radius 
m


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The corresponding circles for constant   lines are shown by the blue-colored circles 

in figure 2. From this figure we can see that if we know one of the two equations 

corresponding to constant   and constant  , we can clearly draw the other from the 

consideration that they are orthogonal to each other. So these circles wherever intersect, 

if we draw common tangent, they must be orthogonal. 

So far we have discussed about uniform flow, Rankine oval, source and sink individually 

and combination of source and sink (which we call as doublet). Up to this step we have 

done exercise which is primarily of academic nature. One may argue that since the 

source and the sink are located at a certain distance apart, what kind of practical flow can 

be represented by this example. If it does not represent the practical flow it is not of that 

interest. Let us now imagine that instead of this kind of flow, we want to model a 

practical flow over a body of the shape of a cylinder. Cylinder, of course, is not the most 

general shape but cylinder is ideal or an idealized geometrical shape and streamlines and 

equipotential lines for flow past a cylinder can give a qualitative understanding of flow 

Figure 2. The pictorial depiction of both constant   lines and constant   lines.  

constant   lines have been already discussed in figure 1. constant   lines 

represent the equation of circle with centre 0,
m


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 and radius 
m


. 



of a fluid over bodies of much more complicated shapes. One of the elementary things 

for studying aerodynamics is to first understand the flow past a circular cylinder. So we  

will start with our objective of generating the shape of a body through the superposition 

of complex potentials which represent the flow past a circular cylinder. We will now 

show that the nice combination of uniform flow and doublet can achieve this feat. We 

will discuss the procedure to show that the consideration of uniform flow and doublet 

can be used to model the potential flow past a circular cylinder. To do that, we will focus 

on the complex potential function F. There is a great advantage because of the linearity 

of the problem. If 
1F F  is the complex potential for the uniform flow and 

2F F  is the 

complex potential for the doublet then for the combination, the complex potential is 

1 2F F F  . F is equal to i  where both   and   satisfy the Laplace equation 

which is a linear second order partial differential equation for this two dimensional 

irrotational flow. Uniform flow means that it could be uniform along any direction; let us 

assume that the uniform flow is along the x direction which is given by u z
 while the 

expression for doublet is given by 
m

z
 where m  is the strength of the doublet, so, 

m
F u z

z
  . We have to actually choose this parameter m ; at this stage we are 

keeping it open. Using 
m

F u z
z

   we get 
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then we get 
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 where we have substituted iz r e  . Next we use 

the expansions cos sinie i     and cos sinie i      because we have to 

somehow separate the rv  part and the v  part. We get 
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If we compare this expression with   i
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   then we get 
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Now let us imagine the flow past a circular cylinder. For flow past a circular cylinder we 

need to satisfy the basic boundary condition at the surface of the cylinder. The surface of 

the cylinder is defined by a constant radius. On the surface of the cylinder we must have 

no penetration boundary condition which means that at r R (which is the radius of the 

cylinder), we must have 0rv  . This is called as the no penetration boundary condition. 

No penetration boundary condition is very important because it does not depend on 

whether it is potential flow or not. It is a kind of kinematic boundary condition at the 

surface. So kinematically there cannot be any penetration across the surface until and 

unless there is a hole. Overall, this is what is being represented by the no penetration 

boundary condition. So, for the no penetration boundary condition we must have 

2
0

m
u

R
    at r R  such that at r R , 

rv  can be equal to zero. So we can set the 

strength of the doublet m  as 2m u R  which completes the first part of analysis. Then 

question arises about the other velocity component v . At r R , 

2
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r R

m
v u

R
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 
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 and 2m u R , so, 2 sin

r R
v u 

  . Interestingly, v  is 

the tangential velocity on the surface of a cylinder. By setting 2 sinv u    at the 

surface of the cylinder we are allowing slip. So we can clearly understand that where the 

viscous effects are not present, slip must be allowed otherwise we cannot satisfy the 

requirements of continuity and momentum conservation on the surface. Before 

discussing about rv  and v , it may be interesting to draw the streamlines. 

R
,p u 

 

 

Figure 3. Streamlines for flow past a circular cylinder of radius R with the 

consideration of uniform flow and doublet.  



The expression of F is given by 
m

F u z
z

   which upon substitution of iz r e   

becomes i im
F u r e e
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 

  . Using cos sinie i     and cos sinie i     , we 

get    cos sin cos sin cos sin
m m m
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Now we look into the expressions of the velocities 
rv  and v  also. 0rv   for all 

locations on the cylinder because that is how it is designed. 2 sinv u    will be equal 

to zero for 0   and   . So, at 0   and   , both the velocities rv  and v  are 

equal to zero which means that the resultant velocity will be equal to zero. These points 

are called as stagnation points. Substituting 2m u R , we get 

2 2

cos sin
u R u R

F u r u r i i
r r

   
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. First of all, when r  is equal to 

R , it represents the surface of the cylinder. The cylinder is shown by the black-colored 

circular portion in figure 3. The uniform flow at the far stream is represented by u . 

From the expression 
2

sin
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 we can understand that when r R  (i.e. at 

the surface),   is equal to zero. Therefore, the surface of the streamline is itself a 

streamline with 0  . Depending on whether r  is greater than R  or smaller than R , 

we will get two different types of streamlines. In one case the term 
2u R

r
  will be greater 

than u r while in the other case u r  will be greater than 
2u R

r
 . So, r R  and r R  

will be two different cases. We have to now decide that out of these two cases which 

case will be interesting. The case with r R  is interesting because we are interested to 

model the flow external to a circular cylinder. What happens inside the cylinder is not of 

our interest. So, flow inside the circular cylinder is like artificial, it is not of a matter of 

interest. Of course, there will also exist rv  and v  components (or,  ,   etc.) but in 

reality, we usually have a blocked cylinder and flow inside the cylinder is not of great 

importance. We recall the expression of   which reads as 
2

sin
u R

u r
r

 


 
  
 

. We 

can clearly see that   will be equal to zero at 0   and   . At 0   and   , the 



streamlines should be straight lines (represented by the dotted straight line in figure 3 

which is passing through the centre of the cylinder).  Streamlines should be representing 

0   irrespective of the value of r as long as   is equal to 0 or  . If   is not equal to 0 

or  , then the representative streamlines are shown by the blue-colored lines in figure 3. 

From these lines we see that the streamlines look very symmetric. 

This symmetry can be broken if the viscous effects are brought in; then this symmetry 

breaking phenomenon due to viscous effects can give rise to a drag force on the cylinder. 

However, without considering the viscous effect we can get significant insights on the 

pressure distribution on the cylinder at least up to the region over which these kind of 

streamline pattern is maintained. If there is viscous effect, then there can be a 

phenomenon called as flow separation at the back face of the cylinder which is also 

called as wake.  

In that scenario, this nature of the streamline patterns on the back side may be disturbed. 

But in the front side, this nature of the streamlines will be maintained to a large extent at 

least up to 
090  . Then there is likely to be a remarkable agreement between the 

pressure distribution coming out of the potential flow solution and the pressure 

distribution coming out of the viscous flow solution (which represents a more realistic 

scenario). This agreement will be valid up to which this kind of streamline pattern is 

maintained. Therefore, getting an expression of the pressure distribution around the body 

is a matter of great importance for us which will be discussed in the next chapter.   

 


