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Lecture - 30 

Potential Flow (Contd.) 

In the previous chapter we discussed about two elementary types of flows; one is the 

uniform flow while the other one is a source or a sink. Let us try to make an analysis of 

whether we can superimpose these types of flows. Let us take an example; it is the third 

example for us which is an example of uniform flow along the x axis as well as the 

presence of a source at 0x  .  
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The physical picture of the problem is depicted in figure 1 where we have uniform flow 

u  as well as q  as the strength of the source located at the origin. Now question arises 

whether by looking into the flow we can guess the possibility of the presence of a 

stagnation point somewhere. Stagnation point is the point where the velocity is equal to 

zero. The uniform flow (denoted by u ) is going towards the positive x direction and 

some of the flow (on the left hand side of flow around the point source) is going towards 

the negative x direction. So these two opposing flows should cancel each other 

somewhere and therefore, we have a chance of getting a stagnation point along the x 

axis. So the first observation is that we have a chance of getting a stagnation point along 

the x axis or on the x axis. 

Figure 1. Physical picture of the example where there is uniform flow u  as well as 

strength q  of a source located at the origin.  



In this scenario, the complex potential function F is given by ln
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therefore, 
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  . We can also express it in terms of r   coordinates 

sometimes. Since there is a source in the present example, it is easier to express it in  

terms of r   coordinate. Then we can rewrite 
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that we can then get the expressions of the velocities 
rv  and v . The expressions of 
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and v  are given by cos
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   and sinv u    respectively. At the 

stagnation point both 
rv  and v  are equal to zero. Our objective is to find out the 

stagnation point. The streamline passing through the stagnation point is called as the 

stagnation streamline. The streamline passing through the stagnation point will represent 

the shape of the body first passed which 
dF

dz
 indicates the resultant flow. At the 

stagnation point we have 0v  . We need to find the possible location of the stagnation 

point. It cannot be located on the right hand side of the origin but it can be located on the 

left hand side of the origin where the negative flow and the positive flow can cancel each 

other. That left hand side or the negative side of the x axis is represented by   . 

Substituting    at 0rv   we get cos 0
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Now we pictorially represent this in figure 2 where the source is located at the origin.  

The radial distance 
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q
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  on the left hand side of the origin is located in the figure. 

The corresponding value of the angle    is also located in the figure. The stagnation 

point is marked by the point ‘s’ in the figure. Once we have the stagnation point our 

objective will be to obtain the stagnation streamline. We have ln
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trying to extract   from here (somehow). The expression ln
2

q
F u z z


   is nothing 

but  ln
2

i iq
F u r e r e 


  ; 

ie 
 is equal to cos sini   and  ln ir e   is equal to 

ln r i . So we get  cos sin ln
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Now if we isolate the real and the imaginary parts, then sin
2

q
u r  


  . The next 

question arises about the shape of the body. The representative flow is the uniform flow 

in addition with the point source at the origin. The shape of the body will be governed by 

the streamline. The streamline will pass through the stagnation point because the 

Figure 2. Pictorial depiction of the present example with source at the origin and 

point ‘s’ being the stagnation point. The streamline passing through the stagnation 

point is shown by the blue-colored dotted line. The streamline outside the body is 

shown by the green-colored solid line.   



stagnation point is also located on the body. One may argue that if the stagnation point is 

on the left side of the origin then whether there is any other stagnation point on the body. 

Also question arises about whether all the points on the body can be considered as the 

stagnation points.  

Here lies a very interesting difference between the real viscous flow and the potential 

flow. In the real viscous flow all the points on the body will have no slip and no 

penetration boundary conditions. The no slip boundary condition comes from the 

consideration where viscosity plays a very critical role. The no penetration boundary 

condition is a kinematic boundary condition which comes from the body contour; it tells 

that the fluid cannot penetrate through the body. For the potential flow the no penetration 

boundary condition is present. So no penetration boundary condition is much more 

fundamental than the no slip boundary condition. It is present irrespective of whether it is 

irrotational flow or rotational flow. But the no slip boundary condition may be violated 

which means that all the points on the body will not have zero velocity. Although no 

penetration condition will be valid but there may be slip condition except the stagnation 

point or the stagnation points. There can be multiple stagnation points where both the 

velocity components will be equal to zero. This is the reason why the stagnation point is 

so special in a potential flow. Now the shape of the body (whatever be the shape) should 

pass through the stagnation point because the stagnation point is one of the points where 

the flow is towards standstill. We define the stagnation streamline as s  . Let  
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   . This is the equation of the streamline passing through the 

stagnation point. Mathematically we can write this equation but it is always interesting to 

imagine physically that what can be the shape coming out of this equation (this is very 

important). This is a priceless skill to imagine in that way and this is where there is a 

paradigm shift of time. In earlier days, students were always encouraged to sketch a 

given mathematical function such that they can visualize the function. But nowadays if a 

mathematical function is provided, students have software which can plot any 

mathematical function immediately and get the picture. So it is completely missing that 

how to speculate the shape of the curve (curve, line whatever) from a given equation.  



We have our equation sin
2 2 2

q q q
u r u y  

 
      where we have 

substituted siny r  , so, 1
2 2 2

q q q
u y




 


 
    

 
 or 

2

q
y

u

 



 
  

 
. Here we 

can substitute different values of θ. We now focus on drawing the curve of this equation. 

First of all, the curve should pass through the stagnation point ‘s’. Now question arises 

about the scenario at x  . We should have 0y   somewhere on the x axis which 

basically occurs at the stagnation point corresponding to the value of   . Apart from 

this point the curve does not pass through the x axis again (except point ‘s’). Additionally 

the curve should be symmetric with respect to the x axis. Now we can change the value 

of θ from    to 2  . We can again substitute sinr   as y to get   
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 such that we can understand it better. So let us take 2   as an 

example. When 2  , we have 
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. In this way we can get points 

with different r and different θ and the curve will be symmetric about the x axis. To 

check whether the curve is symmetric about x axis or not we need to check the 

expression of y which reads as 
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. If there is no presence of x in the 

expression of y then we can say that the curve is symmetric about the x axis. We can do 

all the checks before drawing the curve passing through the stagnation point. Sometimes 

writing in terms of polar coordinates makes it little bit difficult in terms of visualization. 

So we can write it in terms of rectangular Cartesian coordinates. Then the angle θ can be 

replaced by  1tan y x  . The curve passing through the stagnation point is shown by 

the blue-colored dotted line in figure 2. Now we need to know about what happens at  

x  . At x  , we will find that the slope of the curve will be equal to zero. So the 

asymptote will be parallel to the x axis for both + y and – y. The shape of the curve is a 

beautiful shape which is called as the half body or the Rankine half body in a potential 

flow theory. The streamline outside the body is shown by the green-colored solid line. 

There will also be streamlines inside the body but the entire exercise is done actually to 

mimic the flow outside the body. So in the inside we will have the source and there will 

be uniform flow; something will happen with the superposition of all factors. But the 

matter of importance is the shape of the body and at any given value of θ, we can obtain 



the height h by using the formula 1
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. When θ is equal to zero, all lines on 

the x axis will correspond to 0  . So when 0  , we can see that the curve is 

asymptotically attaining a height which is equal to 
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 we can observe that the asymptotic height 
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height of the body) is recovered. All these geometric parameters are important because 

these geometric parameters can only tell us about the shape of the body past which the 

flow is generated by this kind of arrangement. We will consider another superposition 

before concluding the present chapter. 

This was our third example on the potential flow; now we will consider the fourth 

example. We consider a source of strength q at x    as well as a sink of strength q at 

x   where 0  . We will now start with this example; we will not be able to finish 

this example within the present chapter and therefore it will be continued in the next 

chapter. 
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The physical picture of the fourth example is shown in figure 3. Here, the origin is 

located at (0,0). The sink of strength q is located at (ε,0) while the source of strength q is 

located at (- ε,0). Sink means all the flow is coming towards it while source means all the 

flow is going away from it. For this situation, the complex potential function F will be 

the superposition of the individual complex functions corresponding to the source and 

the sink. In a generic representation F is written as  ln
2

q
F z a


   with a  indicating 

the shift in the position. For the source, F is given by  ln
2

q
F z 


   where the shift 

Figure 3. Physical picture of the fourth example where there is source of strength q at 

x    as well as a sink of strength q at x  . 



in the position from the origin is  . For the sink F is given by  ln
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q is replaced by – q because of the flow occurring in the reverse direction. So, overall, 

the complex potential function F for the present example is given by 

   ln ln
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expand  ln 1 z  in a logarithmic series if   is small. Using the expansion of  
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limit 0  . Just in a short hand, if we write 
q

m
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m
F

z
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potential that we have realized. If we bring the source and the sink very close to each 

other then this is called as doublet. Therefore question arises that what kind of body 

doublet generates, what kind of streamlines will be generated and what will be the 

potential lines. All these things will be discussed in the next chapter.  

Overall we have looked into the uniform flow with source and sink with the latest 

addition is the consideration of doublet. We have not completed the doublet part because 

it requires a good inspection of the potential and the streamlines to get a picture of the 

flow field in a doublet. This part will be covered in the next chapter. 

 

 

 


