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Lecture – 29 

Potential Flow (Contd.) 

In the previous chapter, we discussed about the definition of a complex potential 

function which is inclusive of the velocity potential and the stream function. Now we 

need to discuss very carefully about the commonality between the velocity potential and 

the stream function. One interesting confluence is we have already discussed that except 

for the stagnation point, they are orthogonal to each other. We considered a two-

dimensional, incompressible and irrotational flow. For two-dimensional and 

incompressible flow we can write u
y





, v
x


 


. For irrotational flow we can write 

that the curl of the velocity vector is a null vector, i.e. V 0   which is equivalent to 

the form of 0
v u

x y

 
 

 
 for a two-dimensional situation. Now if we substitute the 

expressions of the velocities u and v in the equation 0
v u

x y

 
 

 
, we get 

2 2

2 2
0

x y

   
   

  
 which is clearly the Laplace equation in two-dimension. So we have 

2 0   for two-dimensional and incompressible flow. For two-dimensional and 

irrotational flow we can write u
x





, v
y





. For incompressible, two-dimensional and 

irrotational flow (i.e. if the additional consideration of incompressibility is taken into 

account) we have 0
u v

x y

 
 

 
 which after substitution of u

x





, v
y





 becomes 

2 2

2 2
0

x y

   
 

 
 or, 2 0  . Interestingly, both   and   satisfy the Laplace equation in 

two-dimensional plane. So, if we write 2 0   and 2 0   we can also write 

 2 0i   . That means we can use the complex potential function F i   as a 

basis to capture the field variables   and  . This is the first aspect. Besides, if 1F F  is 

a solution or 2F F  is a solution then we have 2 0F  , or,  2

1 0F   and 2

2 0F  . 



Also, 
1 2F F  will be a solution of this equation, i.e.  2

1 2 0F F   . Not only that, if 

there are other solutions like 
3F F  or 

4F F  then those will also become the solution 

just by simply adding. This linear superposition works because the Laplace equation is a  

linear partial differential equation. Laplace equation is a beautiful equation because form 

a mathematician’s or an applied mathematician’s perspective it might have different 

applications but generically it has the template form of  2 0  . Whereas, from the 

point of view of Physicists and Engineers it can applied on one side to solve the 

problems in irrotational flow in Fluid Mechanics; on another side in Electrical 

Engineering to solve the electrical potential distribution where there are no volumetric 

charges. So we can clearly see that the Laplace equation address a wide range of 

Physical problems and therefore, the solution of the Laplace equation is very important 

in applied mathematics community. Here, we are simply using the superposition and this 

superposition gives a very simple but an elegant way of approaching the Laplace 

equation. Now we will try to find out the functions 
1F , 

2F  etc. for simple types of flows. 

Let us consider the example of uniform flow; uniform flow is the simplest inviscid and 

irrotational flow. So, we will try to find out the function like 
1F . There are other types of 

inviscid and irrotational flows which will give the complex potential functions like 
2F , 

3F  etc. Eventually we will build up on the system by considering a superposition of 

those things and that will be our objective. 

Our objective will be to solve for   and  . Now question arises about the importance 

these two variables   and  . From our earlier discussions we can remember that the 

contour of a body itself is a streamline. The reason why the contour of a body itself is a 

streamline is that, by definition of a streamline there cannot be any flow which penetrates 

through it. A physical body cannot be penetrated by a fluid until and unless there are 

holes in the body. So we may recognize out of here is that, by obtaining stream functions 

we can also solve an inverse problem. We can tell that what could be the contour of a 

body passed which the flow is being described by the stream function. The reason is that 

a special case of the stream function (stream function being set to be equal to zero) will 

represent the contour of the body. For example, we can have a question about what could 

be the nature of the potential flow passed a circular cylinder. To understand that we can 

make a superposition of certain simple types of this potential F (i.e. elementary types of 



complex potential F); we can superimpose them together and try to obtain a contour of a 

body which looks like a circular cylinder. So our objective will be to find the 

superposition that gives the flow passed a circular cylinder or the flow passed an elliptic 

cylinder.   

y

x


 

 

Now we will start with the first example which is the example of uniform flow. So, to 

model a flow, we are actually interested about the stream function and the velocity 

potential. In this example we know the velocity because the flow is uniform. Let us 

consider this uniform flow makes an angle   with the x axis. The x axis and the y axis 

are shown in figure 1 and there is the uniform flow velocity u . So, cosu u   and 

sinv u  . Now the objective is to find the complex potential corresponding to this. 

From the discussion in the earlier chapter we have 
dF

u i v
dz

   (if F i  , then  

dF
u i v

dz
   which was derived earlier). Substituting cosu u   and sinv u   in 

the expression of 
dF

dz
 we get cos sin idF

u iu u e
dz

  

     . Let us take the simple 

example of the special case 0   which is the uniform flow along the x axis. In that 

case we get 
dF

u
dz

 . Integrating both sides we get F u z ; there will be an additional 

constant which can always be set equal to zero as a basis. So, 

 F u z u x i y i      . So, isolating the real part and the imaginary part we get 

u x   and u y  .  

Now let us try to draw constant  lines; constant  lines means constantx  lines. 

Similarly, constant  lines means constanty  lines. So, constant   lines are parallel 

to the x axis while constant  lines are parallel to the y axis. constant  lines are 

Figure 1. Example of uniform flow making an angle   with the x axis. 



shown in figure 2 as 
1c  , 

2c   and 
3c   respectively while constant   lines are 

shown in figure 2 as 
1k  , 

2k   and 
3k   respectively. Overall this figure is called 

as the flow net with orthogonal  ’s and  ’s are together laid out to form a network. So 

this is the simplest type of flow but at least we can get a complex potential F u z  for 

uniform flow along the x axis. Before getting into the next example, which may demand 

the use of the polar coordinates, we will try to write the function 
dF

dz
 in terms of the 

polar coordinates.  

1c  2c  3c 

1k 

2k 

3k 

 

 

v
rv

v

u
 

 

In case of polar coordinates we have rv  and v  as the velocity components instead of u 

and v velocity components. This is the same thing but expressed in r-θ coordinate form 

where the angle between rv  and u is θ as shown in figure 3. Now we resolve the rv  and 

v  velocity components along the x and y directions and we get cos sinru v v    

and sin cosrv v v   . Now we recall the expression of 
dF

dz
 which is given by 

dF
u i v

dz
  . Substituting cos sinru v v    and sin cosrv v v    in the 

Figure 2. Flow network which is a combination of constant  and constant   lines. 

Figure 3. Representation of the velocity components in the polar coordinate system. 



expression of 
dF

dz
 we get 

dF

dz
 in terms of the velocity components 

rv  and v  as  

      cos sin sin cos cos sin i

r r r r

dF
v v i v v v i v i v i v e

dz


                  .  

With this in purview we will consider our next example which is called as the point 

source. A point source is a point from which we have a radial spreading of flow as 

shown in figure 4. Let us consider the source is located at the origin. Then the velocity 

distribution reads as r

c
v

r
  and 0v  .    

 

 

From the expression r

c
v

r
  we can see that at 0r  , there is a singularity but close to 

0r   we have a very high radial velocity 
rv . Also this radial velocity 

rv  decreases with 

1

r
 as the radial location r increases. This may seem to be abstract but what is not abstract 

is the flow rate (qr) which can be obtained from this velocity distribution. At a radial 

location r, the flow rate qr is given by 2r rq v r   where the length perpendicular to 

the plane of the figure is chosen as 1. There is no need of breaking it up into θ-elements 

because rv  is not a function of θ, rv  is a function of r only. Substituting r

c
v

r
  in the 

expression 2r rq v r   we get 2 2r

c
q r c

r
    . This gives rise to an interesting 

observation that the flow rate (qr) is not a function of r. Although the velocity rv  is a 

function of r, the flow rate (qr) is not a function of r. We can write this flow rate qr as the 

Figure 4. Example of a point source with the source being located at the origin. 



universal flow rate q, i.e. 2q c , or, 
2

q
c


 . So, the constant c in the expression of 

rv  

can be replaced by a more meaningful parameter 
2

q


. 

In this scenario we can use the polar coordinate more effectively. We recall the 

expression of  
dF

dz
in the polar coordinate which is given by   i

r

dF
v i v e

dz




  . Here 

we substitute 
2

r

c q
v

r r
   and 0v   to get 0

2 2

i

i

dF q q
e

dz r r e



 

 
   
 

. Now 

ir e   is equal to the complex number z; the equivalent representation of the complex 

number z in the r-θ plane is given by iz r e  . The term 
ie 

 is equal to cos sini   

and thus,  cos sin cos siniz r e r i r i r x i y            where cosx r   and 

siny r  . Using this expression we can rewrite 
dF

dz
 as 

2

dF q

dz z
 . Integrating both 

sides we get ln
2

q
F z


 . So we can sum it up and say that the complex potential 

function F for a source will be related to the flow rate q. Sometimes q is called as the 

strength of the source. Now question arises about the corresponding scenario when it is a 

sink instead of a source. If it is a sink instead of a source, then everything will remain the 

same with just q will be replaced by – q. Now if there is a source of strength q located at 

x a , then we will just require a translation of the coordinate. Let us define X x a  ; 

when x is equal to a, X is equal to zero. In terms of X-coordinate it will become 

 ln ln
2 2

q q
F Z = X iY

 
  . In the present example, Y  is equal to zero, so we get 

 ln ln
2 2

q q
F X x a

 
   . Similarly, wherever the source is located, we can make a 

shifting of the coordinate system. If it is located on the y axis at y b , then we can 

introduce Y y b  . In the generic representation of the function F, we should express F 

as    ln ln
2 2

q q
F X iY x a iY

 
     . Since F is a complex potential function, it 

should include the y-component also. But in the present example it really does not 

matter. It is therefore better to express in a generic way using the combination of x and y 

components. Then the special case will be when there is a source lying on the x axis or 



lying on the y axis. These special cases are treatable by reducing it to either x  or i y . If 

it is located along the x axis, then z will be simply equal to x and if it is located along the 

y axis, then z will be simply equal to i y . In the present example, it will be 

 ln ln
2 2

q q
F Z = z a

 
  . Let us take an example of the y axis to make the 

understanding more clear. Define Y y b  ; new Z will be equal to 

Z x iY x i y ib z ib       . So the part z x i y   is not disturbed but the disturbed 

part will be a  along the x axis or becomes i b  along the y axis. So in our present 

example the complex potential function is    ln ln
2 2

q q
F x i y a z a

 
      where 

X is shifted to become equal to x a . The term z x i y   is present there and the 

parameter a  is isolated which reflects the shift of position in the x axis. So, a  indicates 

the shift in the location along the x axis. Overall, we have the form of the complex 

potential   ln
2

q
F z


  . The term z will always be there irrespective of whether 

there is a shift along the x axis or along the y axis; the definition of z x i y   will 

always be present. Besides, there will be an additional term (denoted by the circled part 

in the expression of   ln
2

q
F z


  ) indicating the shift in either in the x axis or in 

the y axis. At this stage we stop the discussion of the present chapter which will be 

continued with more examples on superposition of these basic flows. 

 

 


