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Lecture – 28 

Potential Flow 

In the fluid mechanics course we have discussed about the viscous flows. Viscous flows 

are very important practical considerations in fluid mechanics because we know that 

every fluid has a viscosity. So, viscous flows are practical representatives of the flows 

which are taking place all around. Now on a different and idealized side of the paradigm, 

there is also another type of flow which is called as the ideal fluid flow. 

So the question arises about the ideal type of fluid flow. First of all, the ideal type of 

fluid flow is inviscid which means that it does not have any viscous effect. In this context 

one needs to keep in mind that inviscid flow does not literally mean that the viscosity of 

the fluid under consideration is equal to zero. There can be cases when the fluid has a 

non-zero viscosity but the rate of deformation itself is such that the shear stress (which is 

the product of the fluid viscosity and the rate of deformation) vanishes. So, inviscid flow 

means that there is no viscous effect. 
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Let us consider a solid boundary on which a uniform velocity profile is coming. In that 

case, at least this snapshot of the uniform velocity profile in figure 1 is clearly a 

depiction of zero shear stress. The reason is that the shear stress is the product of fluid 

viscosity and the velocity gradient. Since the flow is uniform, there is no velocity 

gradient which means that the shear stress is equal to zero. So, to that extent, this 

velocity profile snapshot is an inviscid flow. Now the question arises that whether the 

entire flow can be treated as an inviscid flow or not given that the velocity profile 

Figure 1. Snapshot of a uniform velocity profile at the entry representing an inviscid 

flow. The viscous effect exists within the boundary layer (BL). 



snapshot at the entry is an inviscid flow. This is a very important question because often 

we do not answer this question. We see an inviscid flow at some location and then we try 

to make a speculation from that. We consider that we can treat the entire flow all the 

time at all places as inviscid one. Now we need to recall the factors (which were 

discussed in the earlier chapters) which can change the pattern of an inviscid flow. 

Although the velocity of the fluid is uniform at the entry, we have viscous effects playing 

a significant role in the entire part of the domain. Irrespective of whether it is the full part 

of the domain or a part of the domain which is close to the solid boundary (it actually 

depends on several factors), there is the viscous effect factor. Now the inviscid flow does 

not have a velocity gradient and therefore, it is also an irrotational flow. This irrotational 

flow is the keyword which is of more importance to the topic that we are going to study 

now rather than the inviscid flow. The reason is this effect is something on which we are 

banking on. So we start with uniform velocity profile at the entry which is clearly 

irrotational. Now we recapitulate about the rotational and irrotational flow for ease of 

understanding. The rotationality in the flow is described by the curl of the velocity vector 

which is also called as vorticity, i.e. V = vorticity . V = vorticity is the measure of 

the strength of rotation in the flow. If it turns out to be a null vector then it means that 

there is no rotationality in the flow and we call it as irrotational flow. So the present 

example of uniform velocity profile is a typical example which we can treat as both 

inviscid flow as well as irrotational flow. It is inviscid flow because there is no shear 

stress but for our consideration in this particular chapter it is also important to recognize 

that the curl of the velocity vector V  is the null vector which means that it is an 

irrotational flow. Now the question arises that whether we can treat it as inviscid 

everywhere and irrotational everywhere or not. Clearly, we cannot treat it as inviscid 

everywhere because of the presence of the solid boundary. The presence of the solid 

boundary creates a disturbance or perturbation in the momentum and there will be a 

propagation of this momentum disturbance of the solid boundary towards the outer fluid. 

That propagation will take place through the fluidic property viscosity. So, if the fluid 

does not have a zero viscosity, there will be a viscous effect (no doubt about that). The 

viscous effects will be confined within a thin layer if the Reynolds number is large 

otherwise the viscous effect will be penetrating deep. For the time being, let us assume 

that the flow is a high Reynolds number flow. So if it is a high Reynolds number flow, 

the layer will be thin within which the viscous effect exists; it is called as the boundary 



layer (as shown in figure 1). So, within this boundary layer the viscous effect is 

important and outside the boundary layer the viscous effect is not important. It means 

that outside the boundary layer we can treat the flow as inviscid flow. So, if we can treat 

the flow as an inviscid flow, then the outer velocity profile which was irrotational will  

remain irrotational forever. So the bottom line of our discussion is that if the flow is 

initially irrotational, then it can be treated as irrotational at other places provided the 

viscous effects are absent and of course, other body forces are conservative. So, with this 

consideration we can say that it is not only inviscid or not only irrotational but a 

combination of these two factors (it is also the combination we are looking for). If it is 

irrotational at the entry it will remain irrotational at all other places where it is inviscid 

also. So the combination of inviscid and irrotational flow means that it will remain 

irrotational at all places. This combination results in a null vector, i.e. V  is a null 

vector. If the curl of the velocity vector V  is a null vector we can express the 

velocity vector V  as a gradient of a scalar potential  . This is based on a vector identity 

which tells that the curl of a gradient of a scalar potential is a null vector   0   . So 

we can say that V  and   are synonymous when the right hand side is equal to a null 

vector. This potential function   is called as the velocity potential. The flows where the 

velocity potential exists are called as the potential flows. Now the question arises about 

the reason of studying such an idealized paradigm. This is very important; we will do 

very interesting mathematics over this chapter of potential flow (which we are starting at 

this moment) but it is important to recognize the importance of studying this potential 

flow. When we start discussing the potential flow, we immediately think that this 

corresponds to the situation when the viscous effect is not important and all practical 

flows are viscous flows. So the representation of the velocity vector in terms of the scalar 

potential function may seem like a purely mathematical treatment and therefore question 

arises about whether there is any practicality towards this or not. Now we try to answer 

this question. We have considered here high Reynolds number flow; we have a region 

demarcated as the boundary layer which is adjacent to the solid boundary. The region 

which is outside the boundary layer, the flow is inviscid and irrotational because we have 

already imposed an irrotational flow at the entry. In the inside of the boundary layer the 

flow is definitely characterized by the viscous effect. The common link that relates the 

outer low with the inner flow is the pressure gradient. There is a pressure gradient which 



is imposed on the fluid in the boundary layer is the same pressure gradient that is 

imposed externally. This, of course, is detailed in the chapter of boundary layer theory. 

This is not within the purview of the present chapter but this is a very important 

consideration. To know about this pressure gradient within the boundary layer, we need 

to solve the velocity within the boundary layer. This pressure gradient will be same as 

the pressure gradient which is imposed in the outer flow. The pressure gradient which is 

imposed in the outer flow can be obtained by looking into the solution of the velocity in 

the outer flow which is an inviscid and irrotational flow. Therefore, analysis of inviscid 

and irrotational flow is required to get the velocity distribution and pressure distribution 

outside the boundary layer. That pressure distribution outside the boundary layer is 

imposed on the boundary layer to get the wall shear stress. Therefore, although the fluid 

does not have a zero viscosity, but an idealized paradigm of inviscid and irrotational flow 

outside the boundary layer actually helps us to solve the boundary layer equations. This 

makes it a very practical proposition for doing fluid mechanics analysis. 

So, it is not a question of whether the fluid has zero viscosity or the flow is irrotational 

everywhere or not. Within the boundary layer the flow is clearly rotational. We have to 

be very careful about the usage of the terms like inviscid and irrotational flow. Whether 

this consideration of inviscid and irrotational flow can be applied in the entire domain or 

in a part of the domain is not of much concern. The important thing is that this 

consideration simplifies the governing equations considerably. With this background, we 

will start with this chapter of potential flow which is essentially inviscid as well as 

irrotational flow. By the name of potential flow it is quite clear that it is called as the 

potential flow because the velocity potential exists. The velocity potential exists for 

irrotational flow. Now we will make another very important assumption which is the 

consideration of two-dimensional and incompressible flow. So we consider the two-

dimensional and incompressible flow in addition to the consideration of inviscid and 

irrotational flow. So, the pure kinematic constraint of the incompressibility of the flow 

tells that 0
u v

x y

 
 

 
 where u and v are the velocity components. We can write   as 

u
y




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x


 


 like the potential function  ; it is another parametric function which 

is the function of x and y in this case. So the way we define   here is just to satisfy the 

incompressibility condition in a parametric form. When we write   in this way,   is 



called as the stream function. In our kinematics chapter we have already discussed that 

the stream function is constant along a streamline. But the difference between the 

concept of stream function and streamline is that streamline does not care whether the 

flow is two-dimensional, incompressible or compressible; streamlines are defined for all 

types of flow. Only for a two-dimensional and incompressible flow there is a connection 

between streamline and stream function and the connection is that the stream function is 

constant along a streamline. We recall the equation of streamline which is given by 

dx dy

u v
  (here we are not considering the w-component of velocity since the flow is a 

two-dimensional flow). So,   becomes function of x and y and we can write 

d dx dy
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 
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. Using the definitions of u
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
, we get 

d v dx u dy    . Now, along a streamline, d  is equal to zero because along a 

streamline v dx  is equal to u dy . So these two terms v dx  and u dy  cancel along a 

streamline. We can write from the equation of streamline 
const.

dy v

dx u 

  (so this 

represents constant  lines. Similarly we can think of constant   lines which are 

called as the equipotential lines and these are very important for potential flow. We have 

considered a two-dimensional and irrotational flow. Irrotational flows are very general 

and they can be three-dimensional also. But since we are bringing the stream function 

and the velocity potential in the same platform we are considering two-dimensional 

flows. Similar to stream function  , the velocity potential   is also function of x and y. 

So, d dx dy
x y

 
  

 
; we recall the definition of the velocity potential which is given 

by V   . It also means that u
x





 and v
y





; we substitute these expressions of 

velocities in the expression of d  and we get d u dx v dy   . So, constant   means 

d  will be equal to zero which implies that 
const.

dy u

dx v 

  . Now we multiply the 

expression of the derivatives representing constant  lines and constant   lines and 

we get 
const. const.

1
dy dy

dx dx   

    provided u and v are not zero. If the magnitude of any 

of the two velocities is equal to zero then there is a chance of division by zero and the 



entire process of multiplication breaks down. This singularity point at which the velocity 

u or v (or both) are equal to zero is known as the stagnation point. So stagnation point is 

the point at which the velocities are equal to zero which means that the fluid stagnates. 

So we can infer from here that constant   lines and constant   lines are orthogonal 

to each other everywhere in the flow field except at the stagnation point. Since these 

lines are orthogonal to each other, we can define a complex function based on  and  . 

Now we will define this complex function. 

Let F be a complex function in the form F i   . In this context, we recall the 

definition of a complex number z  which is represented in the form z x i y  . The basic 

premise on the basis of which we can write this form is that x and y are in orthogonal 

direction. In the present case,  and   are in orthogonal direction. Therefore, except the 

consideration at the stagnation point, we can define a complex function as F i   . 

The advantage of using this complex function is that we can now treat the velocity 

potential and the stream function together by a single complex variable.   and   are 

functions of x and y. Using the form F i   we can write 
dF F x F y

dz x z y z

   
 
   

 (this 

is clear because it is functions of two variables x and y). Now 
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1
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i
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). Substituting these expressions in the derivative 
dF

dz
 we get, 

 1
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i i i
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. Now the question arises about whether the 

function F has a defined 
dF

dz
 or not. If it does not have a defined 

dF

dz
 we can say that it 

is not complex differentiable or in another terminology it is not analytic. So the terms 

analytic and complex differentiable are two synonymous terms. Now we have to check 

whether this complex derivative 
dF

dz
 exists or not. We have to check this by noting that 

whether this derivative is independent of the direction in which the derivative is 

calculated. The derivative 
dF

dz
 along constantx   is given by 

constx

dF
i

dz y y


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 
. 



Similarly, the derivative 
dF

dz
 along constanty   is given by 

consty

dF
i

dz x x


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 
 
 
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Now the question arises about whether these two derivatives are equal to each other or 

not. We recall from our previous discussion that u
y x

 
 
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 and v
x y

 
  

 
 (this 

was the definition of the stream function   and the velocity potential   through 

velocities u and v). These conditions are called as Cauchy-Riemann conditions. In the 

present case the Cauchy-Riemann conditions are satisfied since we have considered two-

dimensional, incompressible and irrotational flow. Using these forms of u and v, we get  

constx

dF
i u i v

dz y y





 
    

 
 and 

consty

dF
u i v

dz 

  , so, both the derivatives are equal 

to u iv  provided that the Cauchy-Riemann conditions are satisfied. Before the 

application of the Cauchy-Riemann conditions, the mathematics part does not understand 

about the flow; it was just the rule of partial derivatives. But it eventually understands 

that the flow is two-dimensional, incompressible and irrotational flow through invoking 

the Cauchy-Riemann conditions. Only then the function F becomes analytic or complex 

differentiable. So, it implies that the derivatives 
constx

dF

dz 

 and 
consty

dF

dz 

 are the same 

where x and y are the two representative orthogonal directions. We can say that the 

function F is analytic or complex differentiable which means that the complex derivative 

exists in the complex plane. 

Overall, in the present chapter, we have discussed about the importance of the potential 

flow. We have introduced the way of defining a complex potential F i   whose 

real part is the velocity potential    and imaginary part is the stream function   . In 

the subsequent chapters we will use this definition to bring out certain important 

characteristics of potential flow through defining first very simple types of flow and then 

linearly superimposing the simple flows to get more complex flows. 

 

 


