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Lecture - 27 

Application of Momentum Integral Method and Boundary Layer Separation 

 

In the previous chapter we discussed about the momentum integral equation. In the 

present chapter we will discuss about how this equation can be applied to calculate 

various engineering parameters. The momentum integral equation for the flow over a flat 

plate is given by 
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a cubic polynomial, i.e. 
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. This is an approximate 

form. We have to obtain the coefficients 
0a , 

1a , 
2a  and 

3a  from the known matching 

conditions. We will write the conditions according to the priority because had we 

considered a linear polynomial (i.e. a straight line), then only 
0a  and 

1a  had to be 

determined. So in that case only two conditions would be required and question arises 

about which two conditions we need to use. To do this we write the most prioritized 

boundary conditions. The first of the two boundary conditions that must be satisfied is 

at 0y  , 0u   which is the no-slip boundary condition. The second boundary condition 

is at y , u u . y  is physically replaced by y   because at y  , the  

velocity u  becomes equal to 99% of u ; so at y  , u u . The third boundary 

condition is at y  , 0
u

y


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. These three boundary conditions are very obvious. 

However, here we have four coefficients in the approximation of 
u

u

; so need a fourth 

boundary condition. For getting the fourth boundary condition, we should look into the 

boundary layer equation at the wall. The boundary layer equation is given by 
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. Now u  is equal to zero at the wall because of no-slip condition, v  

is equal to zero at the wall because of no-penetration condition; so, 
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zero at the wall. So, the fourth boundary condition is at 0y  , 
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conditions we can calculate the coefficients 
0a , 

1a , 
2a  and 

3a . Now we substitute these 

boundary conditions to get the final expression of 
u

u

; this is a very trivial algebra. 

Substituting the first two boundary conditions (i.e. at 0y  , 0u   and at y  , u u ), 

we get the expressions 
0 0a   and 

0 1 2 3 1a a a a    . Now we calculate the first and 

second derivatives of velocity which becomes 
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 respectively. Using the expressions of 
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2 0a   respectively. Now we have 

0 0a   and 
2 0a  ; we get two 

simplified equations 1 3 1a a   and 1 33 0a a   from which we get 1
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substitute this expression of the velocity profile 
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integral equation 
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so we do not need any big trick here. There is a good systematic way of doing this, i.e. to 

substitute 
y



  as a variable which results 

3 3

2 0

3 1 3 1
1

2 2 2 2

w d
dy

u dx


   

 

  
     

  
 . 

Taking a differential on both sides of 
y



 , we get dy d  . Now we look into the 

wall shear stress  w  which depends on the velocity gradient 
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. From the expression 
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w  is given by 

0

3

2
w

y

uu

y


 







 


.  Substituting this expression of the wall shear stress 

w  in the 

momentum integral equation 
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dy d   and the changing of limits of integral have been taken into account. The 

integral 
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this to be equal to A, so, 
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and the denominator, 
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relationship becomes 
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   where C is an integration constant. To obtain this constant we apply 

the boundary conditions at 0x , 0   which is at the edge of the boundary layer. 

Substituting this boundary condition, the value of the constant C is found to be equal to 

zero. So we get, 2 3 x

A u
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thing, i.e.
x


 scales with 1 2Rex

 . If we calculate 
3

A
 we will get it to be equal to 4.64 

(one can check this calculation by going through the algebra to see whether it is equal to 

4.64 or not). In Blasius equation we got 1 25 Rex
x

   and here we get 1 24.64 Rex
x

   

which is not that bad considering that this is an approximate solution. Whatever be this 

approximation, it will be further less if we calculate the skin friction coefficient and the 

drag coefficient. The method of calculation of the skin friction coefficient and the drag 

coefficient is exactly the same as we followed in the similarity solution, so this is left 



here as an exercise. The only difference is that here we have to use the velocity profile 
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solution. Also,   is a function of x for which the relationship 1 24.64 Rex
x

   needs to 

be substituted here. Then it will complete the velocity distribution from which one can 

further obtain different parameters like the skin friction coefficient, the drag coefficient. 

Since, the skin friction coefficient f xC  is defined as 
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simply evaluating the integral 
0
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and then multiplying it by 2. Upon integrating we will get the dependence of the skin 

friction coefficient f xC  on the Reynolds number. Finally we will see that the skin 

friction coefficient f xC  becoming scaled with 1 2Rex

 , i.e. f xC ~ 1 2Rex

  (where Rex  is the 

local Reynolds number) and the drag coefficient 
DC  becoming scaled with 1 2ReL

 , i.e. 

DC  ~ 1 2ReL

  (where ReL  is the Reynolds number based on the length scale L). 

The next topic in the remaining chapter, which we will cover, is a very important 

concept. So far we have discussed the growth of boundary layer without the presence of 

pressure gradient. Therefore, question arises about what happens if there is a boundary 

layer in presence of pressure gradient. This is a very interesting topic because if we 

understand it properly, we will get a clue of the motion of various sports balls and the 

effect of the boundary layer growth on their motion. 

Let us imagine that there is a sphere or a cylinder. There is a free stream with u  falling 

on this object. The streamlines which are far away from the cylinder or the sphere will 

not understand the effect of this body. So the streamline far away from the body will be 

straight and parallel to the horizontal axis. With respect to this as a streamline and the 

body of the cylinder as a streamline, this region actually represents a converging flow 

passage (as shown in figure 1). Since it is a converging flow passage, the area of the flow 

is decreasing and we have the fluid velocity accelerating. Now question arises about the 

factor which is accelerating the flow. It is the driving pressure gradient which is 
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accelerating the flow. The reason is that if we imagine the far stream outside the 

boundary layer, the viscous effects are not important there. So it is the driving pressure 

gradient which is actually accelerating the flow. That pressure gradient which is active 

till this region is called as the favorable pressure gradient because it is favorable to 

driving the flow. Favorable pressure gradient is given by 0
dp

dx
 . So this favorable 

pressure gradient part is on the left half portion of the diagram. On the other side (i.e. 

between the outside streamline and the body of the object as streamline on the right half 

of the diagram), the flow passage is diverging. When the flow passage is diverging, the 

velocity is anyway reducing because of this. So, there is a decelerating effect and that 

decelerating effect is due to a pressure gradient which is slowing the fluid down. This is 

called as adverse pressure gradient which is given by 0
dp

dx
 . The basic difference 

between the regions on the left half portion and right half portion is as follows. In the left 

half portion, the fluid will anyway accelerate in the outer stream; in the inner stream it 

will be slowed down by viscosity. But the favorable pressure gradient outside the 

boundary layer will try to drag the fluid. So there will be a monotonous growth of the 

boundary layer. However, in the region on the right half portion of the diagram, the 

inertia of the fluid which the fluid gained in the previous region; will still try to drive the 

fluid. Here, the pressure gradient is opposing the fluid in the bulk and at the wall; the 

viscous effect is also opposing the fluid. So the fluid has only its inertia to support, but 

the pressure gradient is opposing it and the viscous force at the wall is also opposing it. It 

Figure 1. Pictorial depiction of regions of favorable pressure gradient ( 0
dp

dx
 ) 

and adverse pressure gradient ( 0
dp

dx
 ). We have a sphere and there is a uniform 

flow u
 which is falling on this object. 



comes to a condition that the fluid cannot sustain its forward momentum anymore. When 

the fluid cannot sustain its forward momentum anymore there can be a local backflow. 

So, if there is a local back flow close to the wall, we say that the boundary layer has 

separated. The reason is that this point (as shown in figure 1) is artificially a point of zero 

velocity as if the solid boundary is shifted to make sure that there is a monotonic growth 

in the boundary layer. Actually, there is no monotonic growth in this region and there is 

a low pressure region which is created at the back of this after boundary layer separation. 

As we have told earlier, because there is a boundary layer separation, we cannot use the 

boundary layer theory because there is no monotonous growth of boundary layer. So, for 

boundary layer separation, adverse pressure gradient is required but adverse pressure 

gradient does not necessarily mean that there will be boundary layer separation. So, 

adverse pressure gradient is a necessary condition for boundary layer separation but not a 

sufficient condition. The reason is that, despite having adverse pressure gradient, the 

fluid might be still having some inertia in order to maintain the forward motion. But 

having adverse pressure gradient is a necessary condition because without that the 

boundary layer separation will not take place.   

With this physical understanding of the role of the adverse pressure gradient, when the 

boundary layer has separated or get detached from the wall, the consequence is that in 

the region on the right hand side there is low pressure and in the region on the left hand 

side there is high pressure. The reason is that there is a driving pressure gradient and 

because of this, there is a pressure distribution across the body which is now no more 

symmetric. Because of this pressure distribution, there is a drag force which is called as 

the form drag or the pressure drag. The reason of calling it as form drag or pressure drag 

is that, this depends on the geometric form of the body. Also it is a function of the 

pressure distribution on the body. That is why it is called as form drag or pressure drag. 

By this time, we have learnt about two important sources of drag forces; one is the skin 

friction drag while the other one is the form drag or pressure drag. The net drag is the 

resultant consequence of skin friction drag and form drag. Skin friction drag is due to 

tangential force and form drag is due to normal force. Question arises about how we 

consider the drag force. Whatever is the resultant force distribution, the component of 

that force in the direction of the flow is called as drag force. A part of that component 

will be due to skin friction and a part will be due to form drag or pressure drag. Now we 

will try to draw the velocity profiles, the velocity gradient profiles and the second 



derivative of velocity for the cases of 0
dp

dx
  and 0

dp

dx
 . We assume that for both the 

cases, there will be no boundary layer separation. For 0
dp

dx
 , anyway there will be no 

boundary layer separation; for 0
dp

dx
 , we will assume that it is still such that the 

boundary layer separation has not occurred.  
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Now we will focus on the plot shown in figure 2. The upper half portion of this figure 

corresponds to 0
dp

dx
  while the lower half portion of this figure corresponds to 0

dp

dx
 . 

Now looking into the entire diagram it is very difficult for us to follow. Therefore, one 

needs to look into the diagram on the extreme right first (i.e. the variation of second 

derivative of velocity with y). From the right side, we need to go to the left hand side 

Figure 2. Variations of velocity (u), velocity gradient 
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  and second derivative 

of velocity 
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 as a function of y. Figure 2a corresponds to 0
dp

dx
  while 

figure 2b corresponds to 0
dp

dx
 .  



such that it will be easier to follow the logical sequence in which the diagrams are 

arrived at. So we will focus on the second derivative of velocity first. Let us write the 

boundary layer equation which is given by 
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the velocity u is zero, the velocity v is also zero. So, at the wall, we get, 
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arises about what happens at the far stream. 
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decreases with increasing y because it has to zero at the far stream. So, 
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therefore negative at the far stream. Accordingly, the diagram of 
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something like what is drawn in figure 2a (iii). Now we focus on the first derivative 
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For 0
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 , there is no boundary layer separation. So the shear stress (represented by 
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tending towards zero as we go along the y direction towards infinity (shown in figure 2a 

(ii)). The variation of u as a function of y will be the usual one as can be seen from figure 

2a (i). More interesting case will be in presence of adverse pressure gradient (i.e. 0
dp

dx
 ) 

which is pictorially depicted in figure 2b. 

For the case of 0
dp

dx
 ,

2

2

u

y




 is greater than zero at the wall. Far away from the wall, 

2

2

u

y




 

has to be negative; so 
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away from the wall and positive at the wall, it must have crossed the y axis somewhere 

since it is a continuous function. The variation of 
2

2

u

y




 in this case is shown in figure 2b 



(iii). It means that there is a point at which 
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 will be equal to zero. At the wall, it is 

positive and far away from the wall, it is negative; so being a continuous function, it 

must cross 0 somewhere. The location where 
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maximum. The plot of 
u
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 in this case is shown in figure 2b (ii). The point where 

u
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maximum we will have a point of inflection in the velocity profile. This point of 

inflection is marked in the velocity profile shown in figure 2b (i). This point of inflection 

is a hallmark of the possibility of boundary layer separation. 

So by physically looking at the velocity profile, if we can identify a point of inflection, 

then we may sense that there could be a possibility of boundary layer separation. Overall, 

we have discussed about the boundary layer in presence of pressure gradient. We began 

the discussion in absence of the pressure gradient. Now, in presence of pressure gradient, 

we have identified that there are two types of drag forces, namely, skin friction drag and 

form drag or pressure drag. Question remains about how these drag forces vary for 

different types of flows. For example, question appears that if the flow is not laminar and 

becomes turbulent, then what will be the change in the drag force. We will discuss that 

part when we will complete a little bit of discussion on turbulence and some introduction 

to turbulent flows. Then we will come back to this point and discuss that, if we have a 

turbulent flow instead of a laminar flow, then how there will be the change in the drag 

force distribution and how it can influence an engineering device and even motion of 

cricket balls or tennis balls. 

 

 


