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Lecture – 26 

Momentum Integral Method 

 

In the previous chapter, we discussed about the Blasius equation and its implications in 

terms of calculating the wall shear stress and the drag force. Now question may arise 

about why the wall shear stress and the drag force are calculated. The reason is that in 

engineering, wall shear stress and drag force these two are the two most relevant 

quantities which are utilized for design. The velocity profile is fundamentally important 

but to an extent since it is needed for the calculation of the drag force. In the present 

chapter we will continue with that and we will learn about two important definitions. 
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First one is the displacement thickness which is denoted by * . To describe the 

displacement thickness, let us consider the flow over a flat plate as an example where we 

have a boundary layer and the velocity profile in the boundary layer can be shown by the 

velocity profile drawn at section 1 of figure 1. Now we imagine that the boundary is 

physically displaced by a distance and the corresponding velocity profile is drawn at 

section 2 of figure 1. At section 2 the velocity profile is uniform in nature while the flow 

rate at section 1 is equal to the flow rate at section 2. The imaginary displacement of the 

boundary is called as the displacement thickness denoted by the parameter * . So the 

whole idea is that this imaginary shifting of the boundary may be conceptualized. At 

section 1, this is viscous flow and at section 2, this is an idealized inviscid flow. If these 

Figure 1. Schematic of the flow over a flat plate where we have the velocity profile in 

the boundary layer (as shown in section 1). On the right side there is another velocity 

profile if we imagine that the boundary layer is displaced by thickness * .  



two flows would give rise to the same flow rate then obviously the boundary has to be 

displaced for flow at section 2 because at section 1 there is a deficit of flow as evident 

from the velocity profile. So this deficit in the flow has to be compensated by putting the 

boundary somewhere above. Now we equate the flow rate at the two sections which is 

given by  *

0
u dy u



    . The effective transverse length is at section 2 is equal to 

*   since the boundary is being displaced by the length * . Then we can write 

 *

0
u u u dy



     where u 
 is replaced by 

0
u dy



 , i.e. 
0

u dy u


  . So, the 

expression of *  is given by *

0
1

u
dy

u






 
  

 
 . So if we know the velocity profile we 

can calculate the displacement thickness * . This * may be interpreted in a little bit 

different way which is normally not discussed in undergraduate text books. We will go 

through that interpretation. 
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Let us consider the flow over a flat plate as an example and we have a boundary layer as 

drawn and the corresponding velocity profile is shown in figure 2. Let us consider the 

thickness of the boundary layer as  . Now we make an imaginary construction where 

we draw a line parallel to the plate which will cut the vertical height at the thickness  . 

Now we start constructing streamline through this. If we construct streamline through 

this the streamline will be bent. The reason is the flow rate must be same at the two 

sections AA and BB. In the section BB the flow is reduced because of boundary layer to 

compensate for that; so the streamline should be bent upwards to have a region where we 

Figure 2. Schematic of the flow over a flat plate where we have the velocity profile in 

the boundary layer. The imaginary displacement of the boundary layer is denoted by 

* .  



have some additional flow. So, the displacement of the streamline is denoted by * . The 

flow rate is conserved between the two sections AA and BB. The velocity at section AA 

is u
, in section BB inside the boundary layer the velocity is u  while outside the 

boundary layer the velocity is equal to u
. So we can write 

*

0
u u dy u



    . The 

flow rate across the section AA is equal to the flow rate across section BB including the 

streaming of course. Within the boundary layer the flow rate is not remaining conserved 

because the boundary layer is arresting the velocity. So here also we will get 

*

0
1

u
dy

u






 
  

 
 . Interestingly although mass is conserved across these two sections, 

momentum is not conserved. The momentum transport rate per unit width (or can be 

written as momentum flux if it is expressed as per unit area) across the section AA = 

2u  . Similarly, the momentum flux per unit width across the section BB = 

2 2 *

0
u dy u



   . The momentum transport rate is expected to be more across the 

section AA. So, the difference between momentum fluxes between the section AA and  

the section BB is = 2 2 2 * 2 2 2

0 0 0
1

u
u u dy u u u dy u dy

u

  

           



 
      

 
      

=
2 2 2

0 0
u u dy u uu dy

 

           = 
2

0 0
u dy uu dy

 

     . So the difference 

becomes equal to  2

0
difference u u u dy



   . If we normalize this difference by 

2u    then it becomes 
2 0

difference
1

u u
dy

u u u



   

 
  

 
  which is called as momentum 

thickness, just a name given to it. Physically it represents the deficit in the momentum 

across the two sections over which the flow rate is conserved but the momentum is not 

conserved.  

The momentum thickness or the deficit of momentum is a very important practical 

parameter because it is related to the wall shear stress. We will show how the momentum 

thickness relates to the wall shear stress. To show how it relates to the wall shear stress, 

there is a very elegant method called as the momentum integral method which discusses 

about that. Now the genesis of the momentum integral method is as follows. The Blasius 

equation has only a numerical solution and the numerical solution is not very 

straightforward to obtain considering the resources that were available during the time at 



which this equation was first introduced. Nowadays it is very easy to solve the Blasius 

equation but it was not so at the time when it was first introduced. So what was 

effectively needed was essentially something like an approximate way of solving the 

boundary layer equation and this is called as momentum integral method. This method 

was introduced by Von Karman, so it is also known as Von Karman’s momentum 

integral method. The basis of this method is very simple, i.e. to satisfy the boundary 

layer equations in an integral sense. To do that let us take an example of flow over a flat 

plate. So we have the boundary layer equation as 
2

2

u u u
u v

x y y


  
 

  
. We integrate this 

boundary layer equation with respect to y and we get  

                                         
2

20 0 0

u u u
u dy v dy dy

x y y

  


  

 
                                             (1) 

Then we will do some mathematical manipulation. We evaluate the 

integral
0

u
v dy

y

 

 using integration by parts which results  
00 0

u v
v dy vu u dy

y y

  
 

    

where v is chosen as the first function and 
u

y




 as the second function. Assuming two-

dimensional incompressible flow we can write 0
u v

x y

 
 

 
. Using this the integral  

0

u
v dy

y

 

  can be written as   
00 0

u u
v dy vu u dy

y x

  
 

   . So, the left hand side of 

equation (1) becomes equal to  
00

2
u

u dy vu
x

 


 . Now 
0

2
u

u dy
x

 

  can be written as 

2

0 0
2

u
u dy u dy

x x

  


   . Now we need to evaluate the expression  
0

vu


 in which u  at 

y   is equal to u  but v  at y   is not known. To know this we need to integrate the 

continuity equation 0
u v

x y

 
 

 
. Now integrating this with respect to y we get 

0 0
0

u v
dy dy

x y

  
 

    in which we will evaluate the term 
0

v
dy

y

 


only. This integral 

0

v
dy

y

 


 is equal to  

0
v


 in which v at y   is equal to v  while v at 0y   is equal to 

zero because of no-penetration boundary condition. So, the integral 
0

v
dy

y

 


 becomes 



equal to v  and 
0

u
v dy

x






 


. Using this, the term  

0
vu


 will be equal to 

0

u
u dy

x









 

since u  at y   is equal to u
and both u and v are zero at 0y   because of no-slip and 

no-penetration boundary conditions. The integration 
0

u
u dy

x









 can be rewritten as 

 
0

u u dy
x









. Using these mathematical rearrangements, the modified from of 

equation (1) becomes 

                                             
2

2

20 0

u
u uu dy dy

x y

 



 
 

                                            (2) 

The integral on the right hand side of equation (2) becomes equal to 

0y

u

y








 because at 

y  , u does not vary further with y and therefore, 0
y

u

y






. So, we get 

 2

0
0y

u
u uu dy

x y







 
  

  . Now the next important question is that whether we can 

bring the derivative 
x




 out of the integral or not. The answer is we cannot do this since 

  is a function of x. So, for that we have to use the Leibniz’s rule which is the rule of 

differentiation under the integral sign. The Leibniz’s rule is given below 

                       
 

 

 

 
   , , ,

b x b x

a x a x

d F db da
F x y dy dy F x b F x a

dx x dx dx


  

                          (3) 

The derivation of this rule is of course not within the purview of this course but we can 

see a very important analogy of this rule with the Reynolds transport 

theorem.  
 

 
,

b x

a x

d
F x y dy

dx 
 is like the net rate of change for a system, 

 

 b x

a x

F
dy

x



  is the 

change with respect to the control volume while  ,
db

F x b
dx

 and  ,
da

F x a
dx

 are the 

outflow and inflow respectively. This is remarkable because Leibniz’s rule is a theorem 

of mathematics which does not understand transport like fluid flow, heat transfer and 

mass transfer. On the other hand, Reynolds transport theorem is purely based on physical 

considerations. So we can see how these two concepts merge up to define this rule of 



differentiation under the integral sign. In the present case, the function F(x,y) is equal to 

2u uu . Now we need to think about the correction terms  ,
db

F x b
dx

 and  ,
da

F x a
dx

.  

In the present case b is equal to   and   2, 0F x b u u u     . Since a is equal to zero, 

 ,a 0 0 0F x    . So the correction term becomes zero and we can write  

                             2 2

0 0
0y

d u
u uu dy u uu dy

x dx y

 

 



 
    

                              (4) 

This is a very classical example that ignorance sometimes can be a blessing. If someone 

does not know that there is a rule called as Leibniz’s rule, one will freely take the 

derivative outside the integral and proceed. In the present case since the correction terms 

becomes fortunately equal to zero, ignorance is coming out to be a blessing. But if the 

correction term is non-zero then we cannot take the derivative out of the integral sign and 

then ignorance can be a curse. So we should keep in mind that the correction term is 

equal to zero for this specific case but for a general case may not be zero. So it needs to 

be appropriately treated. Now we focus on the right hand side of equation (4), i.e. the 

term 

0y

u

y








. The kinematic viscosity   is equal to 




 and the wall shear stress w  is 

equal to 

0

w

y

u

y
 







 ; so the term 

0y

u

y








 becomes equal to 

0

w

y

u

y








  


. Using 

this expression in equation (4) we get  

                                             2

0

wd
u uu dy

dx

 


                                                      (5) 

Diving both sides of equation (5) by 2u  , we get 
2 0

1w d u u
dy

u dx u u



   

 
  

 
  and the 

integral 
0

1
u u

dy
u u



 

 
 

 
  is nothing but the momentum thickness  . So, 

2 0
1w d u u d

dy
u dx u u dx

 

   

 
   

 
  is the well-known momentum integral equation. If 

there is a pressure gradient term, then one trivial term will be added to this. But to 

illustrate the concept of the method, the best way is to consider the example of a flat 



plate. Now the question arises about how we can solve this equation. To solve this 

equation, we need to have an approximation of the velocity profile. We do not know 
u

u

 

as a function of 
y


 but we can always make some approximation. The hope is that the 

boundary conditions are satisfied. Let us assume that the expression 
u

u

 has some error 

because of the approximation, then the expression 1-
u

u

 will reduce that error since 1-

u

u

 is complementary to 
u

u

. Not only that, but if the expression 
u

u

 is integrated over 

the domain from 0 to  , then the error in 
u

u

 will be much arrested. Figure 3 shows a 

representative plot for 
u

u

 as a function of 
y


 where both the exact solution and the 

approximate solutions are shown. Clearly there is a difference between these two 

solutions, but the integral essentially talks about the area under the curve. The difference 

between the area under curve of the two solutions is shown by the shaded portion in 

figure 3. The difference is actually a little bit compensated because of the multiplication 

of the expression 1
u

u

 
 

 
. So it shows that despite the function 

u

u

 being erroneous, the 

u

u

y



approx

exact

 

 

 

Figure 3. A representative plot of 
u

u

 as a function of 
y


 where both exact solution 

and the approximate solutions are shown.  



integral of the function may be quite accurate and that is the premise of using an 

approximation of 
u

u

 which satisfies some of the essential boundary conditions 

depending upon the order of 
u

u

as a polynomial that we approximate. In the next chapter 

we will make some approximate choices of 
u

u

; maybe we will work out one example. 

Then we will see that how we can calculate the wall shear stress and the other parameters 

based on that approximate choice of 
u

u

. 

 


