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Lecture - 25 

Similarity Solution of Boundary Layer Equation 

 

In the previous chapter we have discussed about the basics of boundary layer, the 

boundary layer theory and the boundary layer equations. In the present chapter, we will 

consider the boundary layer equations for flow over a flat plate and will discuss about 

how we can solve this equation. There is a numerical way of solving this equation and 

that is done after a suitable transformation which is known as the similarity 

transformation. First we will try to get into the basics of similarity transformation and 

how it originates from the physics of the problem. 
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Now let us imagine that there is a flat plate like what is drawn in figure 1. There is a 

boundary layer of thickness  x  which grows along the x direction and there is also the 

edge of the boundary layer shown by the brown-colored solid line in figure 1. Now if we 

plot the velocity profile at different axial location x, we can see that the velocity profiles 

are different at different x. This is visible from figure 1 if one compares the velocity 

profiles at two sections, section 1 and section 2 respectively. The simple reason of this is 

the variation of the boundary layer thickness   as if it is getting stretched as one move 

from section 1 to section 2. So the velocity profile is sort of getting stretched (one can 

imagine of a string being stretched). So the distribution of the velocity u  in the y 

Figure 1. (i) Schematic of the flow over a flat plate where the boundary layer of thickness 

 x  grows along the x direction. (ii) The normalized plot of  
u

u

 as a function of
 
y

x
.  



direction is different for different values of x. But if one makes a plot of 
u

u

as a function 

of
y


, then both the y axis as well as the x axis are normalized between 0 and 1. The 

entire result is within a box of dimension 1. So, interestingly, while the dimensional 

velocity profiles are different at different axial locations x, all these velocity profiles are 

converted into a single dimensionless velocity profile. Now question may arise about 

where the x-dependence of the velocity profile has gone which is clearly reflected earlier 

in the dimensional plots 1 (i). The answer is the x-dependence is indeed present in the 

non-dimensional plot 1(ii) within the parameter   which is a function of x. Now we 

define a variable   as  y g x   where  g x  scales as ~
1


 . If we are able to 

transform the partial differential equation, which describe the boundary layer, in terms of 

ordinary differential equation expressed with   as an independent variable, then we can 

say that the problem is self-similar. In that case the similarity transformation exists. With 

this understanding, we define  
u

f
u




  where  y g x  . Now we write the boundary 

layer equations assuming two-dimensional incompressible and steady flow 
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Now we will write various terms of the x-momentum equations based on this assumption 

that 
u

u

is a single valued function of   where   is essentially a variable that scales with 

y


.  Substituting  y g x  , the term u  of the x-momentum becomes equal to u f . 

Similarly, the term 
u

x




 becomes  

df
u y g x

d


 . In the similar way, the term 
u

y




 

becomes  
df

u g x
d

  and the term  
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2
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d f
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be to eliminate the velocity v from the two equations 0
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 and  
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 because the velocity component v is not included in the 

representation of   
u

f
u




 .  So we will eliminate v. In the x-momentum equation, the 

component v can be written as  
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Therefore, 
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  .  Now we will differentiate this expression of v with 

respect to y. Then we will equate with 
u
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 in order to eliminate v. The differentiation of 

v with respect to y results  
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 which can be rewritten 

as 
u df

u y g
x d
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  


. Now we equate the expressions of 
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df

u y g
d


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cancelled out from both sides and we get the simplified form of the ordinary differential 

equation as  
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We can write equation (2) in a different form as  
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hand side 
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 is a function of   only and the right hand side 
3u dg

g
dx

  is a 

function of x only. Since these two are equal with each other, each must be equal to a 

constant, so, 
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 where c is a constant. Equating 
3u dg

g
dx

  

with c we get, 3 c
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 where 1c  is 

an integration constant. Now we need to know about the variable g . This is a very 

important physical question; g scales with 
1


. We need to remember that at the edge of 

the boundary layer where x is equal to zero   is not defined since it is a singular point. 

So, at 0x  , i.e. at the edge of the boundary layer, we have 0   which means 

that g  . Substituting this condition in 
2
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, we get 1 0c  . So this 

expression is simplified to the form
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need to conclude about the value of the constant c. The value of c can be anything but it 

has to be negative because g is physically scaling with ~ 
1


. So, g has to be positive and 

to make g positive, c must be negative. So if c is negative we could choose a good 

number like 
1

2
   or -2 like that. Let 

1

2
c    which is not a must but we can choose this 

and then g becomes equal to 
u

c x
 , i.e. 

u
g

x
 . Since g  scales with 

1


 we get 

x  , this is how the boundary layer thickness grows with x given that the other 

parameters remain the same. Our main objective is not just to find this scaling 

relationship but to find the velocity profile which comes from the  
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. If we integrate this, an  

integro-differential type of equation is obtained. To make it completely differential 

equation we can define f d  as a ne variable F, i.e. F f d  . In other words, it can 

be written as
dF

f
d

 . We need to remember that f  physically is velocity and 
dF

d
 is the 

cross gradient of some function F. So, F is physically like the stream function. In this 

context we recall the definition of the stream function u
y





 which is valid for two-

dimensional incompressible flow. We will try to establish an analogy between u
y





 

and
dF

f
d

 . Here u  is represented by f  and   is represented by F . Although this is 

purely a mathematical derivation that we have to go through, but we should never lose 

the physical meaning of various parameters that we are going to introduce through this 

equation. With this, now, we get
1

constant
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F FF k    . Now the question is about 

the value of constant k. To understand that value we have to keep in mind that F is 

nothing but the stream function physically. F  is nothing but the first derivative of 

velocity and F  is the second derivative of velocity physically. Now to get the value of 

k, the relationship between F and the other physical variables need to be clearly kept in 

mind. Now we recall the boundary layer equation which is 
2
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apply this equation at the wall. At the wall the velocity u  wu u  is equal to zero 

because of the no-slip condition. The velocity v is also equal to zero at the wall because 

of the no-penetration condition. So both the terms on the left hand side 
u

u
x




 and 

u
v

y


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are equal to zero which means that the term in the right hand side 
2
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
 is also equal to 

zero. If 
2
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u

y

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
 is also equal to zero at the wall then F is also equal to zero at 0   

which is the wall. Now we need to think of the stream function F at the wall. The wall is 



itself a streamline because by the definition there cannot be any flow across the 

streamline. So, by dentition the wall is like a streamline since there cannot be any such 

flow until and unless there are holes in the wall. So, when we do not have holes at the 

wall, then the wall itself represents a  = constant line which is a streamline. So,  = 

constant can be chosen as anything, but for 

our benefit, we choose 0F   at 0  . We could have chosen anything instead of 0 (like 

1,2 etc.). Whatever we have chosen then the value of k would be dependent on this 

particular value at the wall. So to fix it up, it is best to set it zero so that the value at the 

wall does not matter and that means the constant k is equal to zero. So we are left with 

1
0

2
F FF    which is the famous Blasius equation. This is a non-linear third order 

ordinary differential equation. So we need three boundary conditions to solve this. The 

first boundary condition is at 0  , the stream function 0F  . The secondary boundary 

condition is at 0  , 0f   which means that 0
dF

d
 . The final boundary condition is 

at  , 
u

u

 is equal to 1 which means 1f   or 1
dF

d
 . S with these three boundary 

conditions we can numerically solve the equation 
1

0
2

F FF    using various 

techniques such as shooting method for example. We have a separate tutorial where it 

will be illustrated how to numerically solve this equation. So we are not getting into that 

in this chapter. So this will give us a solution for F. Now we make a plot of the velocity 

profile 
u

u

 as a function of   as shown in figure 2. Here 
u

u

 is equal to 1 when   is 

roughly equal to 5. This is obtained from the numerical solution of the Blasius equation. 
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Let us write the solution again which is  y g x   and at 5  , y  , that is the main 

result. It also means that  5 g x  where the expression of  g x  is given 

by  
u

g x
x
 . So, 1 2

2
5 5 Rex

x

x u x

  



   where Rex

u x


 . This is local Reynolds 

number. This shows the strength of the order of magnitude analysis. The order of 

magnitude analysis can show the scaling in just one line by equating the inertia force and 

the viscous force at the edge of the boundary layer, i.e. 
x


 is of the order of ~ 1 2Rex

 . 

The Blasius solution is only giving one additional thing which is the constant 5.  

Now we will define two parameters one of which is the skin friction coefficient 
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Figure 2. The variation of the velocity profile  
u

u

 as a function of the variable   

where the solution has been obtained numerically for the equation 
1

0
2

F FF   .  
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 . The value of 

0
F


  will be equal to 0.332 if we 

numerically calculate it. If we substitute the expression of g, then the skin friction 

coefficient becomes 1 20.664 Ref xC  . Finally we will calculate something which is 

called as the drag coefficient. 
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To calculate the drag coefficient let us first consider the plate in which a differential 

element of thickness ‘dx’ has to be taken into account which is taken at a distance x. The 

drag force on this differential element is D wdF bdx  where b is the width of the plate. 

Then the total drag force is given by 
0

L

D wF b dx   where L is the length of the plate. 

The drag coefficient is given by
21

2

D
D

F
C

u b L 

 ; this is a general definition of the drag 

coefficient which is equal to the drag force divided by a reference area. The reference 

area is the area which is physically meaningful to give rise to the drag force. Here the 

surface area of the plate is physically meaningful to give rise to the drag force. Then, we 

can write 
0

0
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numerator and the denominator. Then, 
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Figure 3. The figure is showing a plate which is required for the drag force calculation. 

Here a differential element of thickness ‘dx’ has been taken into account. 



we have used the expression of g,  i.e.  
u

g x
x
 . Here, ReL

 is the Reynolds 

number which is based in L, i.e. ReL

u L


 . Substituting the value of 

0
F   which is 

equal to 0.332, the value of the drag coefficient 

becomes 1 2 1 24 0.332 Re 1.328 ReD L LC     . So, the constant in the skin friction 

coefficient fC   will always be the double of 
0

F   and the drag coefficient 
DC  will be 

four times of 
0

F  . In case of the skin friction coefficient fC , the scale is with respect to 

the local length scale x while in case of the drag coefficient 
DC , the scale is with respect 

to the length scale L. We will continue from this in the next chapter. 

  

 


