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Lecture – 24  

Introduction to Boundary Layer Theory 

 

In this chapter we will discuss about the Boundary Layer Theory. Boundary Layer 

Theory is one of the outstanding revolutionary theories that has come in the history of 

fluid mechanics. We need to understand the perspective of this theory before coming into 

a conclusion about how important or critical this theory has been. First we will discuss 

about the motivation of learning this theory. Starting from the design of aircraft wings to 

the understanding of how a cricket ball swings, how a bird flies; all these things can be 

well addressed if we know about the boundary layer theory and the methodology to solve 

the boundary layer equations. This is the vastness of the boundary layer theory. It is a 

subject if properly used can give rise to such a critical physical cum mathematical 

understanding of Aerospace Science and Engineering which cannot be really addressed 

by simply looking into the full form of the Navier Stokes equations. Before getting into 

the details of boundary layer theory we have to understand about the boundary layer and 

then the theory aspect comes.  
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Figure 1. Schematic of the flow over a flat plate of length L where the boundary 

layer of thickness   grows in the axial direction. 



To understand about the boundary layer let us consider that there is a flat plate which is 

infinitely long. We have just considered a finite length of it, i.e. length L  as shown in 

figure 1 (it can be whatever length). The fluid is coming from the fat stream with a 

velocity u
 which is a uniform velocity. Next we consider about the phenomenon that 

happens when the fluid interacts with the plate. Let us consider a section like section 1 

what is drawn in the figure. At the wall, there is no slip between the fluid and the solid 

boundary. This is the point which is questionable under certain circumstances. It need 

not be taken as a ritual, it is just a very common situation encountered in engineering. So 

the velocity is equal to zero at the wall. Here the fluid responds completely to the 

momentum disturbance imposed by the solid boundary and is arrested to rest. If we come 

to a point which is a little bit away from the wall then the velocity is not equal to zero but 

also not equal to u
. Now as we go further away and away, the fluid is not directly in 

contact with the solid boundary. But the fluid understands that there is a solid boundary. 

Now the question is how the fluid understands that there is a solid boundary. The answer 

is that there is a messenger of the momentum disturbance which is called as viscosity. 

Through that messenger the fluid understands that there is a momentum disturbance. In 

this way the velocity increases till it becomes equal to u  and then the velocity does not 

change.  

Now let us go the other section (i.e. section 2 of the figure 1). If one compares the 

velocity profiles at the two sections, section 1 and section 2, one can notice that at the 

same layer the velocity is less in section 2 as compared to section 1 because more and 

more fluid is now in contact with the solid boundary. Then the velocity increases and 

finally reaches the velocityu . But here also it reaches the velocity u at higher height in 

section 2 as compared to section 1. After reaching u  the velocity remains constant. We 

need to consider it from a practical engineering consideration because theoretically it 

reaches u only at infinite distance. Practically it may reach u within a finite distance 

and it does that then it simplifies our situation considerably. We will see that later on. 

For the time being we will just focus on the basic understanding of the boundary layer. 

The circled location A shown in figure 1 is the penetration depth up to which the effect of 

the plate is felt. The thickness of the penetration depth is denoted by  x . Since the 

effect of the plate is felt only within the penetration depth, outside, because of the 



uniform velocity, the fluid does not understand where the plate is. Now we will draw the 

locus of the circled points of the figure (this locus is shown by the brown-colored solid 

line in the figure) we come up with two regions. The region within the penetration 

depth  x  is the region where the effect of viscosity is important in terms of creating a 

velocity gradient. So this region is called as the boundary layer and the locus is called as 

the edge of the boundary layer. In short we write BL which stands for the boundary 

layer. We can clearly see from the figure that   is a function of the axial co-ordinate x. 

Now the next obvious question is about the thickness of ; i.e. how small or how large 

this   is. There is a possibility that this   can be very large.   can be very large when 

the fluid is highly viscous. In that case up to a large distance from the wall the effect of 

viscosity, i.e. the effect of the momentum disturbance of the wall will be felt. However, 

if the fluid is less viscous then the effect of viscosity or the momentum disturbance 

becomes less. The things we are saying about the thickness of  is a qualitative 

representation. Quantitatively we need to identify some quantitative parameters. But the 

change in the thickness of   does not have any quantitative meaning. It is just a 

qualitative way in which we can bring out the physics. So if the fluid is less viscous, then 

 becomes very thin. Now if the thickness of   becomes so small that its thickness at 

the length L becomes very small as compared to the length L, i.e. L L   then we can 

develop a nice theory where we can solve simplified versions of the Navier Stokes 

equation within the boundary layer. Outside the boundary layer, we can use simple 

potential flow equations or inviscid irrotational flow equations which for constant 

density of fluid become Bernoulli equation. 

So, the entire domain where ideally Navier Stokes equation should have been solved 

now gets reduced to a very narrow domain within which the Navier Stokes equation in a 

simplified form need to be solved. Outside this narrow region the Navier Stokes equation 

need not be referred to at all and inviscid equation can be used. In the modern era of 

Computational Fluid Dynamics (CFD) people may argue about the reason that why we 

need to enforce such restriction in the domain that the viscous flow equations will be 

solved only within a small part of the domain and will not be solved in the other part of 

the domain. People can say that they can blindly solve the full viscous flow equation (i.e. 

the full Navier Stokes equation) for the entire domain since we have nice CFD tool or 

software. Now we need to think of the era when the boundary layer theory was 



developed. That era was a time when the modern day high performance computing was 

not available. So, when modern day high performance computing was not available, in 

those days machine was not beating human beings; human intellect was manifested at its 

best. So, human intellect always tried to make an attempt to reduce the computational 

task by using judicious combination of physics and mathematics, and that was first 

attempted by the famous engineer known as Prandtl and he came up with this 

revolutionary theory. It is revolutionary because prior to Prandtl’s era, fluid mechanics 

was governed primarily by the mathematicians and it was understood that there are 

certain classes of problems for which the exact solution of the Navier Stokes equation 

exists. If the exact solution does not exist then people were debating about what could be 

the possible solutions since there were no computational tools available. But those cases 

could not be addresses to come up with solutions that engineers can use for designing of 

devices. For example, the designing of aircrafts or designing of automobiles were not 

possible until this beautiful theory (boundary layer theory) appears. This theory not only 

reduces the computational task to a large extent but also gives a nice physical insight to 

the problem. It shows that irrespective of how large the domain may be, under certain 

cases, there is a small part of the domain in which the viscous effects are important and 

in the major part of the domain we can use the dynamics of inviscid flow equations. The 

interesting thing is that although the fluid still has a viscosity there it does not have a 

velocity gradient and that makes the shear stresses vanish. So this brings us to the 

perspective of studying the boundary layer theory. Here people may make another 

argument that in Prandtl’s era may be CFD was not that developed and in the modern era 

there is no requirement of studying the boundary layer theory because we can run the 

CFD codes. Here we need to think that in some cases we may have a solid boundary, 

may not be as simple as a flat plate. When we have a solid boundary, to understand the 

velocity gradients at the solid boundary we need to use very fine messing or very fine 

grid points close to the solid boundary. But in the outer part, outside the boundary layer 

such fine grid points may not be required otherwise it will unnecessarily add to the 

computational cost. Therefore, there is always a question that how much distance close 

to the solid boundary we need to use the find grid and beyond what distance the fine 

messing is not necessary. We will know this only when we can make an assessment of 

the distance   for a given physical problem. Then only we can use fine grid up to that 

distance and outside that we will not unnecessarily put huge computational burden by 

putting large number of grids. So the moral of the story is that even in the modern era of 



CFD, the physical basis of the boundary layer theory remains as important as it was 

when it was first introduced. So with this little bit of background we will try to write the 

Navier Stokes equation appropriate to this physical consideration. We will first discuss 

about the considerations that we need to keep in mind. So our assumptions will be steady 

flow, the next assumption will be constant physical properties; we will also include 

homogeneous isotropic fluid considerations for the sake of understanding. Next is the 

assumption of Newtonian fluid which means that by a single parameter viscosity we can 

describe the constitutive behavior. If we assume the constant property then it also means 

that the density of the fluid is constant which implies that the derivative of density is 

equal to zero, .i.e. an incompressible flow. Now we will consider the two-dimensional 

scenario where we have the x and y co-ordinates. If we have a flat plate, then the x co-

ordinate will be along the plate and the y co-ordinate will be normal to the plate as shown 

by the figure in the left hand side of figure 2. Now instead of flat, if it is curved, then we 

will not have global x and global y. In that case we will have a curve fitted x and y, we 

will have a co-ordinate system where x and y are relatively orthogonal but their 

orientations are continuously changing as we are moving along the solid boundary as 

shown in the right and side of figure 2. But for a flat plate, it will remain as global x and 

global y.  
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First we will write the conservation of mass or the incompressibility condition in this 

case. The incompressibility condition is given by 0
u v

x y

 
 

 
. Physically we will have a 

boundary layer of thickness   like what is shown in left hand side of figure 2. We have 

a free stream velocity u and the length of the plate is L. We will make the order of 

magnitude analysis of this equation. Whatever we have studied about the order of 

Figure 2. Co-ordinate system for the flow over a flat plate. Co-ordinate system where 

we have curve fitted x and y which are relatively orthogonal to each other. 



magnitude analysis in the earlier chapters we will apply the same here. The scale of the 

velocity u  is given by ~ u
while the axial length scale is of the order of ~ L. So, 

u

x




is 

of the order of ~
u

L
 . Let us assume the velocity scale for the transverse velocity v  is v  

which occurs at the edge of the boundary layer. So we have a nice transition form a 

mathematical based theory to an engineering based theory. When we say mathematical 

based theory, the thickness   will be technically equal to infinity. But in case of an 

engineering based theory, if the velocity reaches 99% of u , for all practical purposes we 

can assume that the condition of free stream has been reached. So we will have a finite 

boundary layer thickness instead of a mathematically imposed infinite boundary layer 

thickness. So, the term 
v

y




 becomes of the order of ~ 

v


  where v is the velocity v  at 

the far stream. The two terms 
u

x




and 

v

y




 must cancel each other to make the summation 

equal to zero, so, 
u

L
  and 

v


  must be of the same order. So, 

u

L
  is of the order of ~ 

v


  

from which we get ~v u
L


  . One important thing we can understand that v  becomes 

much less thanu , i.e. v u 
 if   is much less than L, i.e. L . But v  is never 

equal to zero no matter how much less the thickness   is as compared to the length L. 

This is a big difference between this and the fully developed flow. In case of a fully 

developed flow, we have the velocity v  equal to zero. But in the present case v  may be 

very small as compared to the velocity u  but it is not identically zero. Some students 

have a misunderstanding that v  is equal to zero because when we draw the velocity 

profile in the boundary layer, we only draw the x component of the velocity profile, we 

do not draw the y component of the velocity profile. But the y component is very much 

present there. If   is comparable with the length L, then v  and u may be comparable. 

But in boundary layer theory we are looking for only those conditions in which   is 

much less than L. So the boundary layer will exist for all viscous flow problems. It may 

be very small or may be as large as infinity but the boundary layer theory is a theory 

which captures only those problems where the boundary layer thickness is much less 

than the length L. In the other part there may be boundary layer but the boundary layer 



theory will not work. So in the present case, v u 
 since   is much less than L. Now 

we will consider the x-momentum and the y-momentum equations. First we will write 

the x and y momentum equations and then we will perform the order of magnitude 

analysis. The two momentum equations are given below 

 x-momentum:                    
2 2

2 2

1u u u u p
u v

x y x y x




     
    

     
                                     (1) 

and y-momentum:             
2 2

2 2

1v v v v p
u v

x y x y y




     
    

     
                                      (2) 

where the assumptions of steady flow, constant properties and Newtonian fluid have 

been taken into account. At this stage we know about how to write the Navier Stokes 

equation. Let us assume that there is no body force. Now let us find the order of 

magnitudes of the different terms of these two momentum equations. Since u  and x  are 

of the order of u  and L respectively, the term 
u

u
x




 in equation (1) becomes of the order 

of ~
2u

L
 . The second term 

u
v

y




 becomes of the order of ~

v u


  . But from the 

incompressibility condition we know that ~v u
L


  . Substituting this, we get that the 

term 
u

v
y




 to become of the order of ~

2u

L
 . This is something which is not intuitive. So 

the term 
u

u
x




 and the term 

u
v

y




 are of the same order. Natural intuition tells us that 

since the velocity v  is much less than u  because   is much less than L, the term 
u

v
y




 is 

much less than 
u

u
x




 which is not true. This is not true because the gradient 

u

y




 is much 

sharper than the gradient
u

x




. So the tem 

u
v

y




 is exactly as important as the term

u
u

x




. If 

we cannot ignore the term 
u

u
x




 we cannot ignore the term 

u
v

y




 also. Now we focus on 

the right side of the x-momentum equation (1). In between the two terms 
2

2

u

x




 



and
2

2

u

y




, 

2

2

u

x




 is of the order of 

2

u

L

   and 
2

2

u

y




 is of the order of

2

u


 . Since   is 

very small as compared to the length L, the term 
2

2

u

x




 becomes very small as compared 

to the term 
2

2

u

y




 and one can neglect the term 

2

2

u

x




. At this moment we are not 

commenting about the pressure gradient 
p

x




 (i.e. about its order of magnitude) which 

will be discussed later. Now we will find the order of magnitudes of different terms of 

the y-momentum equation (i.e. equation (2)) in a similar way as it is done for the x-

momentum equation. The first term 
v

u
x




 is of the order of ~

u v

L
  . Using the continuity 

equation (or the incompressibility condition), the second term will also be of the same 

order, i.e. 
v

v
y




~

u v

L
  . Now the term on the right side 

2

2

v

x




 will be of the order of 

~
2

v

L
   while the term 

2

2

v

y




 will be of the order of ~

2

v


 . Since L , the term 

2

2

v

x




 

can be neglected as compared to the term
2

2

v

y




. All the considerations here are based on 

the fact that   is much less than L, the entire understanding is based on that. So let us 

compare the inertial terms (i.e. the terms on the left hand side of the equations) of the x-

momentum and the y-momentum equations. For x-momentum, the inertial terms are of 

the order of ~
2u

L
  while for the y-momentum, the inertial terms are of the order of 

~
u v

L
  . So, 

inertial term in the -momentum

inertial term in the -momentum

y

x
 ~ 

2
~ ~

u v
vL

u u L

L


 



 

 which is much less 

than 1 if   is much less than L. Similarly, if we compare the viscous terms of the two 

momentum equations, we get 
viscous term in the -momentum

viscous term in the -momentum

y

x
~

2

2

~ ~

v
v

u u L












 

. So the 

same conclusion about the viscous terms can be drawn if   is much less than L. So, if 

the inertial terms of the y-momentum equation are at least one order of magnitude less 



than the inertial terms of the x-momentum equation and the viscous terms of the y-

momentum equation are at least one order of magnitude less than the viscous terms of 

the x-momentum equation, the remaining term 
p

y




 (of y-momentum) will be at least tone 

order of magnitude less than the term 
p

x




(of x-momentum). So, the important conclusion 

is 
p p

y x

 

 
. This is the conclusion after performing the order of magnitude analysis in 

the y-momentum equation. In that case we can write p as a function of x only. So, the 

term 
p

x




 can be approximated as

dp

dx
. So this leads us to the boundary layer equations. 

From the Navier Stokes equation it leads to a simplified Navier Stokes equation within 

the boundary layer which is called as the boundary layer equations as given below 

                                              
2

2

0

1

u v

x y

u u dp u
u v

x y dx y




  
    


      

   

                                         (3) 

So now we have the boundary layer equations and the question arises about when these 

equations will be valid. To understand this, we take the example of flow over a flat plate. 

Of course, we have taken into consideration the fact that   is much less than L. But 

there can be a physical problem where some external condition is imposed which does 

not understand about the thickness of . So we need to express this in terms of externally 

controllable physical parameters. Considering the flow over a flat plate as an example, 

since there is no pressure gradient in the boundary layer, we can write 
dp

dx
to be equal 

to
dp

dx
 . Thus the pressure gradient along the x direction becomes equal to that imposed 

from the outside of the boundary layer. In the outside of the boundary layer, the beauty is 

that we can use the Bernoulli’s equation if the density of the fluid  is constant. The 

reason is that the uniform flow is irrotational outside the boundary layer and it is inviscid 

also. Inviscid flow means the irrotational flow will remain irrotational forever. So we can 

use the Bernoulli’s equation, i.e. 
21

2
p u C    where C is an absolute global constant. 



Now if we differentiate it with respect to x, we get 0
dp du

u
dx dx

 
  . Since the far 

stream velocity u
does not change with x, 0

du

dx
   and we get 0

dp

dx
  . Now 

substituting 0
dp

dx
   in the x-momentum equation we get 

2

2

u u u
u v

x y y


  
 

  
. Here, the 

terms in the left hand side are of the order of ~
2u

L
  while the term in the right hand side is 

of the order of ~
2

u


 . These two terms 

2u

L
  and 

2

u


  are of the same order, i.e. 

2u

L
 ~

2

u


  from which we get 

L


 ~

1 2
u L





 
 
 

. Now 
u L


  is the definition of the 

Reynolds number, i.e. ReL

u L


 , so, 

L


~ 1 2ReL

 . Now in the expression of 

u L


 terms are externally controllable parameters. We are able to say that   is much less 

than L only when the Reynolds number ReL  is large. So the boundary layer theory is 

applicable to large Reynolds number problem. Now the question arises about how large 

the Reynolds number can be. The value of the Reynolds number ReL has to be such that 

  is at least one order of magnitude lower than L; the ratio of 
L


 must be at least 0.1 or 

less. From there we can find a corresponding Reynolds number. For that Reynolds 

number and beyond that Reynolds number we can use the boundary layer theory. So   

much less than L will boil down to very large Reynolds number ReL . 

Now the question arises about when the boundary layer theory is applicable. The answer 

is that the boundary layer theory is applicable when 
L


 is much less than unity (i.e. 

L


<< 

1) which is equivalent to large Reynolds number  ReL . There can be other cases which 

may not be encountered in the case of flow over a flat plate like the pressure gradient 

dp

dx
 can play a very critical role. For example, if the pressure gradient 

dp

dx
is such that 

there is an adverse pressure gradient, it means that the pressure is increasing along the x 

direction. If the pressure increases along x, then there will be a force which is opposite to 



the motion of the fluid. The fluid wants to move along the positive x direction but the 

pressure gradient, which is called as the adverse pressure gradient, is trying to oppose the 

movement. Along with that there is also the viscous force which also tries to slow the 

fluid down. So the acceleration or the inertia of the fluid may not be sufficient enough to 

overcome these two forces and if it is insufficient, the fluid instead of moving forward 

may start to move backward along the negative x direction. This is called as boundary 

layer separation. This boundary layer separation is possible only when there is adverse 

pressure gradient. If the pressure gradient is favorable, then the pressure gradient will 

drive the flow along the positive x direction and boundary layer separation may not be 

possible. But if there is an adverse pressure gradient there is a chance of boundary layer 

separation and if it occurs then there is no more monotonic growth of   as a function of 

x and then we can say that the boundary layer theory does not work. So the boundary 

layer theory is applicable when (i) 
L


 is much less than 1 and (ii) there is no boundary 

layer separation. This is not very commonly discussed but this is very important. For 

flow over a flat plate boundary layer separation does not matter because there is no 

question of an adverse pressure gradient, the pressure gradient is zero; so there is no 

question of boundary layer separation. 

So, in the present chapter, we have learnt about the boundary layer theory, the boundary 

layer equations, the reason of its importance and the assumptions that are behind this 

boundary layer theory. We will take it forward from this in the next chapter. 

 


