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Lecture – 23 

Statistical Treatment of Turbulence and Near – Wall Velocity Profiles 

In the previous chapter, we have discussed about some of the physical features of the 

turbulent flow. Now the question arises about how we can represent these physical 

features or take these physical features into account through a mathematical approach. It 

is very difficult to have a rigorous mathematical approach for turbulent flow because we 

have a wide range of length scales and time scales (that is one of the physical features). 

So, if we want to computationally solve a problem, we may need to resolve a domain 

which should be able to capture from the smallest scale (i.e. the molecular scale) up to 

the large eddy scale; all the relevant spatial and temporal scales. Although this can be 

said easily, it is not so easy to implement because it requires huge computational effort. 

There are established strategies known as direct numerical simulation strategies through 

which the Navier-Stokes equation can directly be used to solve turbulent flow problems. 

We need to remember that the Navier-Stokes equations are very much valid for turbulent 

flow provided the other conditions are satisfied. It is a question of implementing the 

numerical scheme that makes it so challenging. Certain statistically based models have 

come up which hold the capability of solving the turbulent flow problems in an 

approximate sense which serves most of the engineering purposes. 

Now we will discuss about the statistical treatment of turbulent flows. Let us say that 

there is a powerful probe or a device which is plotting one component of velocity. We 

need to remember that turbulent flow, because of its random fluctuations over space and 

time is always three-dimensional and unsteady. There is nothing called as steady 

turbulence. We will discuss later that what we mean as steady turbulence in terms of the 

physical understanding but the terminology is not very appropriate to consider.  
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Now we make two plots for two different scenarios. In the first case, the plot is shown by 

the black-colored curve in figure 1(a) while in the other case the plot is shown by the 

black-colored curve in figure 1(b). These representations are very difficult to capture 

vividly through a model because we can see that there are very small oscillations of u 

over time. Similarly, if we draw a variation of u over space similar things can be 

inferred. Now we want to make a statistical average of this variation. We define the 

statistical average of velocity as 
0

1 T

T
u Lim u dt

T
  . This is essentially an integration of u 

over time t from 0 to a time period of T which tends to infinity. Similar to this variable u, 

we can use any other variable like v, w, p etc. Now the definition of statistical average 

needs to be clearly understood; it does not literally mean that T will be equal to infinity. 

It means that this limit of T is significantly larger as compared to the small fluctuation 

times over which it is fluctuating. If that be the case, then we can smoothen out these 

data in terms of an average u . These average values of the data are shown by the blue-

colored solid lines in figures 1(a) and 1(b). We should remember that T is much larger 

than the small fluctuation time scale but it also has to be smaller than the total time 

otherwise we cannot capture this variation of the average value over time. If we make an 

average which does not vary with time although u varies with time, then sometimes it is 

erroneously called as steady turbulence. This type of variation is shown by the blue-

colored solid line in figure 1(b). Instead of this time averaging, averaging can also be 

done similarly over the space. For time averaging, we have u at a given location and we 

are integrating with respect to time. In space averaging, we integrate u with respect to 

space at a given time. We are not putting any bias; this is just the standard way of 

calculating the average. No matter whether it is time average or the space average, the 

concept remains similar. 

(a) (b) 

Figure 1. The variation of velocity u with time t for two different scenarios (a) and (b) 

respectively. The blue-colored solid lines represent the corresponding statistical 

averages. 



Then if we have a function f, we can resolve it in terms of average f  and fluctuation f  , 

i.e. f f f   . So, as an example, the difference between u and u  is given by u . This 

is called as Reynold’s decomposition. Now if we take average on both sides of 

f f f   , the average of f becomes equal to f  and the average of f  is also f . From 

this, we get the average of the fluctuation f   to be equal to zero. But the interesting 

thing is that although the average of 'f  is zero and average of another function g   is 

zero, the average of the product f g   is not equal to zero. The reason that the two terms 

are equal to zero when averaged individually but when their products are averaged there 

is no guarantee that it will be equal to zero. With this little bit of background on the 

statistics of turbulent flow, we will define few other important terminologies, for 

example, root mean square (rms) of velocity u. Root mean square of u is defined as 

 
2

u u  which is equal to 2u  and this is not zero definitely. Now we can formulate 

the Navier-Stokes equation by decomposing it into the mean and the fluctuating 

component and this is called as the Reynolds averaging of the Navier-Stokes equation. 

The advantage with the Reynolds averaging is that we do not require any more to capture 

the smallest length scales and the smallest time scales. So we can consider a length scale 

and a time scale which are substantially elevated as compared to the finest ones which 

are physically there. So computationally the problem becomes more tractable. Now we 

will write the Navier-Stokes equation in the conservative form which is given by 
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 where ib  is the body force term. The 

important thing that needs to be mentioned is that we will not depend so much on the 

body force. We now decompose the variables into mean and fluctuating components to 

get     
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 velocity iu  into two components as i i iu u u  . In the next step we will do an averaging 

of this equation; we get a ‘
-
’ symbol over the terms to indicate the averaging and we get  
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. One 



important factor missed in this calculation is that the density   should also be ideally 

decomposed into mean and fluctuating components because density may also be 

fluctuating in the turbulent flow. But we assume a constant density flow and that’s why 

we did not decompose it into two components. But one needs to remember that we 

cannot do that for all cases. For our interests, density is not fluctuating; it may have a 

larger time scale over which it varies. It is still ok but it is not fluctuating like the other 

parameters u, v and p. So, if we take the average, the average of fluctuating component 

will be equal to zero. We should remember that the time scale over which we are finding 

out the average is different from the time derivative 
t




. So this time derivative and the 

time averaging do not conflict with each other. The term   
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 is a 

little bit of special one and we will discuss it later on. After time averaging, 
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. Now we will work out the 

remaining term   
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term i ju u  will result i ju u . Now, when we make an average of the term i ju u  , iu  being 

constant with respect to the average will come out of averaging and it will become the  

integral of ju  over the time period which will be equal to zero. In the similar way, when 

we make an average of the term j iu u  , ju  being constant with respect to the average will 

come out of averaging and it will become the integral of iu   over the time period which 

will be equal to zero. But the average of the product of two fluctuations i ju u   will not be 

equal to zero. So,   
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 will become simplified to the form 
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. So we can, in principle, write a Reynolds averaged Navier-

Stokes equation (or in the short form called as RANS) which will be in the following 

form 
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looks like the Navier-Stokes equation in an averaged sense except for the additional term 
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 indicates the Reynolds stress or the turbulent stress. 
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 can be treated as ij  and 
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then 
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i ju u    represents the expression of the Reynolds stress or the turbulent stress. 

This is purely done from the analogy of the dimension of this additional term 
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. So, while trying to 

get rid of problem of solving a turbulent flow we have come up with the situation where 

we have observed some additional unknowns in the form of second order tensor. To 

overcome this problem one possibility is that we write the expression 
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i ju u    in the 

form 
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 where T  is a fuzzy parameter called as turbulent viscosity. It is 

not a constant but a parameter which depends on the turbulent fluctuations which can be 

mathematically modeled. So, T  is not a constant but it needs to be close with the aid of 

other turbulence parameters. This is called a closer problem in turbulence modeling. It 

tells that the Navier-Stokes equations after Reynolds averaging does not remain closed 

because of the introduction of the turbulent stress and we need a closer model for T  

(which is called as a turbulent viscosity) to close the problem. We will talk about certain 

models which achieves this but before that we will try to discuss some special cases of 

the statistical approach.  



The first one is the homogeneous turbulence. Homogeneous turbulence is a case where 

the turbulence statistics (for example, average, RANS etc.) are not functions of position. 

We have already talked about the homogeneous term but the homogeneous turbulence 

only talks about the homogeneity in the statistical representation, not the homogeneity in 

the parameters because the parameters are all distributed over position. So, homogeneous 

turbulence means that the turbulence properties are not dependent on position which 

means that they are invariant to the translation of coordinate axis since we can change 

the position by translating the coordinate axis. So this is translational invariance. 

Similarly, isotropic turbulence talks about rotational invariance. Not only that, by 

definition, it is invariant with respect to translation as well as reflection (all sorts of 

transformations) which preserve the length. So, the statistics are invariant with respect to 

that. Therefore, isotropic turbulence by definition must be homogeneous because there is 

a translational invariance associated with it. These types of turbulences are important 

because we can conclude something about the averaging technique. In real experiments, 

we neither purposefully do the time averaging nor we purposefully do the space 

averaging; but we do ensemble averaging. 

So question arises about the ensemble averaging. We usually do a large number of 

repeated experiments under identical conditions. It is very important to do repeated 

experiments under identical conditions. So, if we repeat the experiments under identical 

conditions, then we call the averaging as the ensemble averaging. If it is a homogeneous 

turbulence, then we can say that the ensemble average is same as the space average 

because it does not vary with space. So repeating experiments at different spatial 

locations is as good as repeating the experiments under identical conditions. Similarly, if 

we have stationary turbulence, then the ensemble average becomes equal to time average 

because things do not vary with time (the turbulence statistics does not vary with time). 

Now, if we have homogeneous as well as stationary turbulence it will mean that the time 

average is equal to the space average which is further equal to the ensemble average. 

This is known as the Ergodic hypothesis. So, if this Ergodic hypothesis is satisfied, the 

averaging we use could be time average, space average, ensemble average whatever. 

Now we will discuss a little bit about the closer model to show the procedure to close 

these system of equations. We will now talk about one classical model which is called as 

Prandtl’s mixing length model. 



Clearly from the dimensional arguments and by drawing analogy from the molecular 

theory, Prandtl proposed that the kinematic viscosity can be thought of as a product of a 

length scale over which there is turbulent mixing multiplied by the fluctuation 

component of the velocity, i.e. 
t ml u  . Here 

t  is the kinematic viscosity, 
ml is the 

length scale over which there is turbulent mixing and u is the fluctuating component of 

velocity. 
t  is nothing but the turbulent viscosity 

T  divided by the density  . Now the 

problem is that we neither know 
ml nor we know u . We can have a different way of 

looking into it; we can take the form m

u
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. Then the expression of t  will be 
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
. Here, y is the direction in which the mixing takes place. Let us say we have 

some eddies which are interacting with other set of eddies. There is a fluctuating velocity 

in the y direction because of which the eddies are interacting. If one part is moving 

slower then it will try to slower the other part down. So the mixing length can be 

modeled as 
2
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y



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 which tells that the kinematic viscosity can be expressed in 

terms of the mixing length. If this mixing length can be somehow estimated then we can 

close the analysis. There are various other closer models. For example, we can calculate 

the kinetic energy (k) based on the fluctuating component of the velocity; we can 

calculate the dissipation rate of kinetic energy which is denoted by  . We can have two 

additional equations on k  and  ; then we can relate 
T  with k and 

T  which is called as 

k-  model. So, there are various models which exist. The present course is not a course 

on turbulence modeling but we are trying to provide the philosophy behind this. The 

philosophy is that we have to somehow close the analysis; we have to somehow get an 

expression of T  in terms of the other parameters. So we have only one parameter ml  

using which we can close the system. There is one very important issue that no matter 

whether the flow is laminar or turbulent, the flow very close to the wall is always 

laminar. So wall-bounded turbulent flows are very important and we will now briefly 

discuss about it.  

 Let us consider that we have a wall, the y direction is in the upward direction. In a 

region very close to the wall, we can write 
w

u

y
  . This is called as the near-wall 



behavior in the viscous sub-layer region. In some books it is called as the laminar sub-

layer but it is not correct. The reason is that in the viscous layer, the flow is 

predominantly laminar but there are some small turbulent fluctuations in that layer 

(although that does not affect the wall shear stress 
w

u

y
  ). From dimensional analogy 

we can write the wall shear stress 
w  as 2u ; then 
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 as y . Very adjacent to the wall we will have u y  .  Of course, 

after we go little bit of away from the wall, we will have u
 as a different function of 

y , i.e.  u f y  . But when we go to the outside little bit far away from the wall, then 

the turbulent stresses will come into picture. So,  u f y   is like the inner behavior 

and the outer layer behavior is given by  
u u

f
u


  which is called as the velocity 

defect law. We get all these from dimensional argument. So,  
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f
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
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velocity defect law and we will show later that how this law relates to the condition of 

 u f y  . So,  u f y   is an inner behavior and  
u u

f
u


  is an outer 

behavior. The deviation of u  from the free stream velocity u  is because of the 

turbulent stress which is somehow normalized with respect to u . In this way, the inner 

layer effect propagates to the outer layer. 
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different dimensionless scale 
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  where   is the length scale of the outer layer (it has 

nothing to do with the inner layer). We have a continuity of 
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a function of y only; it does not understand  . Similarly, 
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d



 is a function of   only; 

it does not understand y . Since they are equal to each other; they must be equal to a 

constant, so, constant
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i.e. we switch from u  to u
 for our understanding since we have used y .  Since, in the 

both sides there was u , changing it to u
 will not make any difference in the 

expressions. Now if we integrate constant
du du

y
dy d




 



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1
lnu y B



    which is called as the logarithmic law or the log law. Remarkably this 

1


 is a universal constant and   is called as Von Karmann constant. For all experiments, 

the value of 
1


 is found to be around 2.5 which is remarkable but the experiments have 

revealed that. The constant B is around 5. These   and B are the universal constants.  

Now, if we sum this up, we will get a variation like what is drawn in figure 2. It shows 

the variation of u
 as a function of y  in a logarithmic graph. Up to 5y  , there will 

be one kind of variation, up to this 5y  , we have the viscous layer for which we have 

u y  . Beyond this value of y , u
 will be a different function of y  (not u y  ). 

Up to the limit 30y  , we will still have this kind of behavior. In the outer layer we 

have the logarithmic law which reads as 
1

lnu y B


   . So, if we plot u
 as a function 

of ln y , then it will be a straight line. If we plot the real physical data, then those data 

will smoothly converge in this regions and then beyond some y , those physical data 

will have a significant deviation from the behavior described by figure 2. So the region 



up to 5y  , i.e. 0 5y   is known as the viscous layer and 5 30y   is called as 

the buffer layer. This figure also shows the inner layer as well as the outer layer from 

which one can see that there is an overlap between the inner layer and the outer layer. So 

the overlapping region is the region where the logarithmic law holds. Red lines represent 

the fitted law and green lines represent the experimental data and we can see that how 

remarkably the near-wall behavior varies under certain conditions. 
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Overall, we have discussed the fundamental aspects of turbulent flow in the present 

chapter and the previous chapter. There are many practical engineering applications 

where the concept of turbulent flow and laminar flow and their combination are used to 

design a body for minimizing the drag forces. We will have a separate tutorial where 

there will be practical considerations for designing of aerospace vehicles or designing of 

engineering object by minimizing the drag force based on the concept of laminar flow 

and the turbulent flow that we have learned in this fluid mechanics course. 

 

Figure 2. The variation of u


 as a function of ln y
 where different regions are shown. 


