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Lecture - 21 

Confined Oscillatory Flows 

 

In the previous chapter we have discussed about how an oscillation in a solid boundary 

can influence the flow in the surroundings. However those surroundings were considered 

to be unconfined. In the present chapter we will consider an oscillatory flow in a 

confinement which can be thought of the first primitive model to understand how an 

oscillatory flow of blood takes place in blood vessels. So here we will consider the 

oscillatory flow in a confinement. 
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Let us consider a channel of height 2 H  as shown in figure 1. For simplicity we have 

considered a rigid channel. We have to keep in mind that the real blood vessel is flexible 

rather than being rigid although there are lots of controversial issues and unknown 

paradoxes about the flexibility of blood vessel and its universal nature. For simplicity we 

will consider it as a rigid channel. We have a pressure gradient sin
dp

A B t
dx

    

acting along the x direction. This is a reasonable form, of course we can add sin and 

cosine terms to make it more practical but mathematically this gives a physically relevant 

signature to solve the problem. At the walls we have no-slip boundary condition, the 

half-height of the channel is H . The pressure gradient 
dp

dx
 is not a function of x and 

therefore, it is translational invariant problem along x. It is a function of time but not a 

function of x. The governing equation for this problem is given in the following  

Figure 1. Schematic of an oscillatory flow in a confinement where we have a pressure 

gradient sin
dp

A B t
dx

    acting along the x direction. 
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Here the only difference in the present problem with the previous problem is that here we 

have a pressure gradient which is acting in terms of the governing equation. In case of an 

unconfined flow, until and unless we apply a special pressure gradient, by the natural 

consequence of the flow there is no pressure gradient. But when there is a confined flow, 

there has to be a pressure gradient. Otherwise we cannot drive the flow until and unless 

we have special mechanisms like application of an electric field or other external fields 

to drive the flow.  

Now the present problem has a steady part and an unsteady part. So we will decompose 

the problem into a steady problem and an unsteady problem. In the form 

of sin
dp

A B t
dx

   , A  corresponds to the pressure gradient for a steady problem. The 

steady part of the solution is governed by 

Steady part:                                   
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The velocity u  is a function of the y co-ordinate only, i.e.  ssu u y  and therefore, 
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can be replaced by

2

2

d u

dy
. So, the steady part of the velocity is denoted by the 

variable ssu .  Then the governing equation becomes
2

2
0

d u
A

dy
  . This steady problem 

we have already solved in previous chapters where a pressure driven flow in a parallel 

plate channel has been considered. So here we will not discuss it again. We will only 

mention about the boundary conditions. Because of the symmetry of the problem only 

half of the domain can be chosen for solving. At the channel centerline, i.e. at 0y  , we 

have 0
du

dy
  which is known as the symmetry condition. At y H , the velocity u  is 

equal to zero because of no-slip boundary condition. Now we will focus on the unsteady 

part of the solution. The governing equation for the unsteady part is given below 

Unsteady part:                            
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where the unsteady part of the velocity is denoted by the variable û . The final solution 

of the problem is the summation of the steady part 
ssu and the unsteady part û , i.e. 

ˆ
ssu u u  . In the governing equation of the steady part, instead of 
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can also write it as 
2

2

ss ssu d u
A

t dy
 


 


where the time derivative term ssu

t

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 for the 

steady part is equal to zero. Now, as usual, we will first make a scaling analysis to the 

problem before attempting for a solution for the unsteady part. To do this, let us first 

write the governing equation, i.e.  
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. This problem is not like that 

a plate is oscillating. So we do not have a natural velocity scale. The velocity scale will 

depend on the pressure gradient but it is not explicit. Since we do not know the velocity 

scale, we simply write the scale of velocity û  as ~ su  while the scale of time t  is 

obviously ~
1

~st


. So, the scale of the left hand side of equation   
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 becomes ~ su  . The term sinB t  is of the order of ~ B  

because sin t  is of the order of unity. The scale of the term 
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is ~

2

su

H
 . Since we 

are writing orders of magnitude whether it is H or 2 H it does not matter. Using these 

scales we can non-dimensionalize the variables as
s

t
t

t
 , 

ˆ

s

u
u

u
  (with a question mark 

about what the velocity scale su is) and
y

y
H

 . Now the dimensionless form of the 

governing equation 
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Now in this problem two terms will always be important out of the three 

terms s

u
u

t
 




, sinB t  and 
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. If we are interested about an oscillatory flow, 

then the term sinB t has to be important because that is what we are aiming for to create 

an oscillation in the flow. If this term sinB t is not important we will never get an 

oscillation in the flow. So sinB t becomes important according to our requirement. 

There is something which is intrinsically important which is the unsteady represented by 



the term s

u
u

t
 
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
. When we are creating an oscillation we must have unsteadiness in 

the flow. Now we do not know about the remaining term
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, (i.e. the viscous term) 

whether it is 

important or not. That depends on the kinematic viscosity and the other parameters and 

that is the interesting physics of this problem. 

Now we will divide both sides by B  we get
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sin t term is of the order of 1 (i.e. ~O(1)). In order to become equally important, the 

term su u

B t
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already of the order of 1. So the term su
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cannot compete with the term sin t . If su u
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order of 1, then obviously su u
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So this gives a natural velocity scale of the problem. Although there is no velocity which 

is directly imposed from the oscillatory component of the pressure gradient we can get a 

velocity scale natural to the problem. Once we substitute this scale of su in the remaining 

term 
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 the term gets modified as
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 where B gets 

cancelled out from the numerator and the denominator. Now, 




  is known as the 

kinematic viscosity, so it becomes
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. Now we need to think of the term 




 and 

its significance. If we recall from the Stokes second problem (which was discussed in the 



previous chapter), 

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 is equal to the square of the penetration depth , i.e. 2
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plate was simply oscillated by a linear shear. Let us write 
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where
H


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  with   being the penetration depth corresponding to a simple oscillatory 

flow in an unconfined environment. The value of the parameter   will now determine 

whether 

this term 
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is important or not. So, we have an external control by which we can 

say whether the viscous term is important or not. If the value of   is smaller than 1, then 

the reciprocal of   (i.e.
1


) is large and then the viscous term can be very important. 

Here   is small only when   is large and   is large when   is small. So we notice that 

whether the viscous term will be important or not, it also depends on the oscillatory 

frequency. So, overall it depends on three important parameters which is like a design 

problem in engineering. So to make the viscous term important or not important we need 

to look into the three parameters  ,   and H . By making a combination of these three 

terms we come up with the non-dimensional parameter   which tells us whether the 

viscous term is important or not. Combining all these aforesaid considerations, we write 

the final form of the governing equation  
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Just like the Stokes 2
nd

 problem, here also we will have an oscillatory solution. We 

assume  Im i tu e f y    , here it is imaginary because of the presence of the sin t  term. 

Instead of  sin t  if cos t term is present we need to take the real part of the function
i te , 

i.e. Re i te   . If we take the time derivative of u , then we get  Im i tu
i e f y

t


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. The 

term sin t can be written as sin Im i tt e     while the term 
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. Substituting these expressions in equation (4) we get  
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To make it little bit more simple (just algebraically simple), we define f f i  , so, 

2 1i f i f i i f     since 
2i  is equal to -1. Some rearrangement makes it 1i f i f   . 

Also f   is equal to f  . Substituting theses expressions in equation (5) we 

get 2 0f i f  .  We can write the solution of this equation either in terms of 

exponential functions or in terms of hyperbolic functions. For a change let us write the 

general 

solution of this in terms of hyperbolic functions as    1 2cosh sinhf c i y c i y    . 

We could have written it as 1 2

i y i yf c e c e   ; representation in terms of the 

exponential form is as good as the representation in terms of the hyperbolic terms (they 

are just the different combinations). In order to obtain the constants 1c  and 
2c , we need 

to apply the boundary conditions. The first boundary condition is the symmetry condition 

at the channel centerline, i.e. at 0y  , 0
u

y


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 which is further simplified to 0
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From the expression    1 2cosh sinhf c i y c i y    we can say that 
df

dy
 is equal to 

    1 2sinh coshi c i y c i y   , at 0y   1 sinhc i y  is obviously equal to 

zero. So, in order to make 
df

dy
 equal to zero the other integration constant 

2c must be 

equal to zero. Then the function f  is simplified to the form  1 coshf c i y . Now we 

apply the other boundary condition, i.e. at 1y   (or y H ), u   is equal to zero in which 

it consists of both the steady part  ssu  as well as the unsteady part  û  . Since the 

steady part has already been taken equal to zero, the unsteady part is also equal to zero 

which means 0f  . Using the relation f f i  , we get f being equal to i  at 1y  . So 

we get,  1 coshc i i   from which we get the expression of 1c  as 

 
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Hence, we have got the solution as 
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. From this expression of 



u  one can determine the unsteady component û  and the final solution of velocity will 

be the summation of the steady part  ssu  and the unsteady part  û  , i.e. ˆ
ssu u u  . So, 

only the ‘cosh’ term is present in the unsteady part. So, clearly the time dependence will 

have a very important role to play depending on the parameter   which combines three 

factors  ,  and H . Now it is suggested for the students to make a plot of the profile 
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 using some software like MATLAB where we can assume 

this particular form of solution and use inbuilt complex operators with which we can 

extract the real part and the imaginary part separately. These are inbuilt as mathematical 

function. We can construct the function and then take the imaginary part and then can 

add the steady part with it and plot the velocity distribution in the channel. To do this we 

need to know about the relevant parameters. In this context the utility of solving the 

problem in a dimensionless environment comes into picture where all the relevant 

parameters come through a single dimensionless term . One of the relevant parameters 

is the frequency , another is the kinematic viscosity   while the remaining one is the 

channel height H .  These three parameters are combined together in the parameter . So 

by choosing different values of   i.e. by just a single parameter (which contains 

interrelationships of different parameters) we can get very interesting types of velocity 

distributions in the channel. Overall, in this chapter we have discussed about the role of 

confinement in an oscillatory flow and we have studied to a reasonable extent that how 

the pressure gradient can affect the flow for both steady and unsteady scenarios. 

 


