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Lecture - 20 

Exact Solution of Navier Stokes Equation for Unsteady Flow 

 

In the previous few chapters, we have discussed about some exact solutions of Navier 

Stokes equation for steady flow. In reality many flows are unsteady flows. In the present 

chapter we will focus on obtaining the exact solutions for Navier Stokes equations for 

two special unsteady flow problems which are very classical problems. The first one is 

known as the Stokes 1
st
 problem while the second one is known as the Stokes 2

nd
 

problem. 

Stokes first problem: 

y

x

0u
 

 

 

Let us consider that we have a flat plate as shown in figure 1. The fluid is near the plate 

which is standstill as the plate is not moving. Suddenly we drag the plate towards the 

right (or the left whatever) with the velocity 0u  and this plate tends to drag the fluid along 

with it. Our point of interest here is to examine that how the velocity in this fluid varies 

as a function of the position and time. All those traditional considerations like Newtonian 

fluid, Stokesian fluid are valid here also. When we say about position, it is ideally a 

three-dimensional flow. But if the width of the plate is infinitely long then it is still a 

two-dimensional problem. Now if we think of the co-ordinate system, here it is the 

rectangular Cartesian co-ordinate system with x and y co-ordinates. The plate is pulled 

along the x direction. Here the predominant effect is the variation of the velocity along 

the y direction. Now question may arise about when there can be the variation of the 

velocity along the x direction. The answer that when 0u  becomes a function of the axial 

Figure 1. Schematic of the Stokes 1
st
 problem where the plate is pulled axially with a 

velocity 
0u  . 



co-ordinate x, then this velocity can vary in the x direction. Since the pulling velocity 
0u  

is not a function of x, there is no variation of this velocity in the x direction. So, because 

of the uniform pulling along the x direction, this problem is having a translational 

invariance with respect to x. One should not get confused between the translational 

invariance and the fully developed flow. Here the velocity u  is not a function of x 

 u u x  because of translational invariance which comes from the boundary condition. 

But the fully developed flow comes from a very important fundamental premise, i.e. the 

flow is confined in a closed passage (like channel flow or pipe flow). But the present 

problem is an open flow problem and hence, one cannot use the concept of the fully 

developed flow here. So u  is not a function of x here; it is a function of the y co-ordinate 

and the time t, i.e.  ,u y t  (or  ,u t y ) . If we assume two-dimensional incompressible 

flow, we can write the continuity equation as  

                                                        0
u v

x y

 
 

 
                                                              (1) 

Out of the two terms in the continuity equation (1), the term 
u

x




is equal to zero because 

of translational invariance which means that the remaining term 
v

y




is equal to zero. Now 

0
v

y





 implies that the velocity component v  is not a function of the y co-ordinate. Also 

the velocity v  is equal to zero at y = 0 because of the no-penetration boundary condition. 

This indicates that the velocity v  is equal to zero for all y. 

In order to obtain the velocity distribution let us write the governing equation; i.e. the x 

component of the Navier Stokes equation 
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In the momentum equation (2), the terms 
u

u
x





 and 

2

2

u

x




 are equal to zero because 

the velocity u  is not a function of x. The term 
u

v
y





 is equal to zero because the 

velocity v  is equal to zero for all y. Since the flow is unbounded in nature and there is 



infinite fluid. So everywhere there is atmospheric pressure which means that there is no 

pressure gradient acting in the axial direction; so the term 
p

x




is equal to zero. Using 

these considerations, the simplified x momentum equation can be written as  

                                                    
2

2

u u

t y
 
 


 

                                                        (3) 

This equation (3) can be written in an alternative form as 
2

2

u u

t y


 


 
 where 





  . 

Now we need to discuss about the parameter   which is called as the kinematic viscosity 

of the fluid which is a very important property. The fluid viscosity   (or dynamic 

viscosity) is the ability to create momentum disturbance. So when we have a plate 

moving, by virtue of the fluid property viscosity this message of movement of the plate 

is propagated to the outer fluid. But the outer fluid because of its inertia tries to retain its 

earlier momentum which is the condition of rest in this example. Because mass is the 

measure of the inertia and density   is related to mass, the parameter 





  indicates 

the ability of the fluid to create a disturbance in the momentum relative to its ability to 

sustain its momentum and that is the physical meaning of the kinematic viscosity. So 

kinematic viscosity is a very important parameter, it is not just like the fluid viscosity. 

Fluid viscosity tries to diffuse momentum but there is something which tries to sustain its 

momentum and their relative importance is a matter of concern. So instead of just 

considering it as a fluidic property, it is necessary to consider its physical significance. 

Now, looking into the simplified momentum equation 
2

2

u u

t y


 


 
 one can 

understand that this equation has certain scales involved. For the scale of the velocity u , 

its maximum value 0u can be chosen. But for the time there is no such scale, time t can 

vary starting from zero to time tending towards infinity. So we can take time as an 

independent variable. Let us say that we are interested with a time scale of t which is 

denoted by st , then the scale of the term  
u

t




 becomes of the order of 

u

t




~ 0

s

u

t
(here the 

‘~’ symbol corresponds to the order of magnitude of the respective term). Here st  can 

vary from zero to infinity. We are interested to observe about what is happening within 



the time scale
st . Now, the scale of the term on the right hand side is given be 

2

2

u

y




~ 

0

2

u



 where   is the length scale which is yet to be known. Physically   signifies the 

thickness of the fluid which responds to the movement of the plate at a time
st t . 

Beyond this , the outer fluid does not understand that there is a plate which is moving. 

So, there the velocity remains zero. Only within this  layer, the velocity is changing. In 

the scale of 
2

2

u

y




 the term 2 appears in the denominator because of the presence of y 

derivative twice while in the numerator there is the presence of the velocity scale 
0u , so, 

it becomes ~ 0

2

u



. Since the two terms 
u

t




and 

2

2

u

y




are equal, they must be of the 

same order because there is no other term to cancel these two terms in the momentum 

equation. So if equate the orders of these two terms, we can write   ~ st . So at a 

time st t , we would get a feel about the order of the magnitude of the thickness of the 

penetration layer  . Now let us plot the variation of the velocity as a function of the 

position and time which is qualitatively shown in figure 2. 

0u

y

u
 

 

 

In figure 2 we make a plot of the velocity variation where in the axial direction 

there is the velocity u  while in the transverse direction there is the y co-ordinate. The 

Figure 2. The variation of the velocity u  as a function of the transverse co-ordinate y 

evaluated at different times 1t , 2t  and 3t  respectively. 



velocity at the boundary is equal to 
0u as shown in the figure. This boundary condition 

remains in the figure. Now the variation of the velocity u is plotted for a time
1t t . Then 

we increase the time from 
1t t  to 

2t t . In this way, we increase the time up to
3t t  

(the direction of increasing time t is also shown in the figure). Physically this figure tells 

that as we allow more and more time, more thickness of the fluid is responding to the 

movement of the plate. So the velocity plots are all scattered. If we want to collapse all 

these data in the form of a single variable, we need to understand the similarities of these 

data. The similarity is that the expression 
0

u

u
 is a function of a single quantity , i.e. 

 
0

u
f

u
  where   scales with 

y


 , i.e. ~

y



. So, our expectation is the representation 

of 
0

u

u
 as a function of a single variable  and this expectation will be true only when we 

will be able to convert the partial differential equation 
2

2

u u

t y


 


 
 into an ordinary 

differential equation. If we cannot convert or we are not in a position to convert this, then 

we can say that similarity does not exist. Since   is a functions of t, i.e.  t ; then the 

expression 
0

u

u
also becomes function of t. But the expression 

0

u

u
 is a function of the 

variable   which itself depends on both y and t. Let us assume  y g t   where 

 g t scales with the reciprocal of the thickness  t . Now let us consider the 

equation
2

2

u u

t y


 


 
. Using the newly assigned variable , the term 

u

t




 can be written 

as 0 0

u df df dg
u u y

t d t d dt



 

 
 

 
. Then to determine the term

2

2

u

y




 let us first express 

u

y




 

in terms of the variable which is
0 0

u df df
u u g

y d y d



 

 
 

 
. So, 

2

2

u

y




 can be written as 

2 2
2

02 2

u d f
u g

y d





. Since the two terms 

u

t




 and 

2

2

u

y




 are equal we can 

write
2

2

0 0 2

df dg d f
u y u g

d dt d


 
 .  The term 0u  gets canceled out from the both sides, we 



substitute y  by 
g


 and finally we get the following expression of the ordinary 

differential equation 

                                                           

2

2

3

d f dg

d dt
df g

d






                                                           (4) 

So now we have been successful in separating the variables. The left hand side 

2

2

d f df

d d


 
 is a function of   only and the right hand side 

3

dg

dt

g
is a function of t  only. 

So these two terms are equal only when they are equal to a constant. Let us assume c  be 

the constant. So we can write

2

2

3

d f dg

d dt c
df g

d






  . Let us take the part 
3

dg

dt c
g

  which can 

be rewritten as 3g dg c dt  . Now integrating this with respect to t  we get 

2

1
2

g
c t c



 


 where 1c  is the integration constant. Now we recall the parameter g  

which scales with ~ 
1


 where   is the penetration depth which determines about how 

much of the fluid understands the effect of the movement of the plate at a given time t . 

At time 0t  ,   will be tending towards zero because the plate movement has just 

started. Then g  will tend to infinity, i.e. g  . Applying the condition 0t  , g  , 

the integration constant 1c  becomes equal to zero which means that 
1

2
g

c t



. So, 

out of a rigorous mathematical exercise the simple thing that g  scales with 
1

t
 is 

recovered. Since g  scales with 
1


 ,   scales with t . This highlights the strength of 

the order of magnitude scaling analysis that whatever could be recovered from very 

involved elaborate mathematics the same thing could be recovered from pure intuitive 

physical arguments. Not let us consider the possible values of c  which can have a value 

of anything. But here it has to negative because g  has to be real; so c  must be negative. 

As an example we choose 2c    which is not a must, we can choose any other value. 



As we have learnt in the school level in ratio proportion problem that if 
a

b
 is equal to 

c

d
 

, we can choose each to be equal to a constant k . The value of k  does not matter as long 

as the condition  
a c

b d
  is satisfied. In the present case, the value of c  does not matter as 

long as g  remains physically realistic. If we choose 2c   , then 2 comes out of the 

square root and we get
1

2
g

t
 . Using the value of c  and equating this with 

2

2

d f df

d d


 
 we can write  

                                                     

2

2

2

d f

d

df

d






                                                                     (5) 

Equation (5) is a very simple ordinary differential equation to solve. Let
df

h
d

 , so we 

have 2 0
dh

h
d



  . This can be rewritten as 2

dh
d

h
   . Integrating both sides we get 

2ln lnh k    from which we get
2

h k e  . Using the relation 
df

h
d

  we get the 

final form of the function f , i.e. 
2

1
0

f k e d k


    where k  and 
1k  are integration 

constants. These two constants can be obtained by using two boundary conditions. The 

first boundary condition is obvious, i.e. at 0   (which means 0y  ) we have
0u u , so 

the function 
0

u

u
 becomes equal to 1, i.e. 1f  . Using this boundary condition we 

get 1 1k  . Now we apply the second boundary condition. At , the function f  

becomes equal to zero because the fluid at infinity does not understand the effect of the 

solid boundary; then
2

0
0 1k e d 


  . Now we need to evaluate the integral

2

0
e d 




 . 

Let 2 z  , so, 1 2z   and
1

1
2

1

2
d z dz



 . Substituting this in the integral we 

get
2

1
1

2

0 0

1

2

ze d e z dz 
 

        . The integral

1
1

2

0

ze z dz

 
    

 is a standard integral the 



result of which is given by 
1

2

 
 
 

 (where   is called as the gamma function). The value 

of 
1

2

 
 
 

 can be given by
1

2


 
  
 

. So the final value of the integral 

2

0
e d 




 becomes equal to  
2


. So we get 1 0

2
k


   or, 

2
k


  . The final form 

of the function f  upon the substitution of the constants k  and 
1k  is given 

by
2

0

2
1f e d


 



   . The integral  
2

0

2
e d


 





  by definition is known as the error 

function  erf  . So,    1f erf erfc     where  erfc   is known as the 

complementary error function. So this is the solution to the problem. Now we make a 

graphical plot of the variation of the parameter 
0

u

u
 as a function of the variable 

2

y

t



  as shown in figure 3. In case of the variation of u  with respect to y, we get 

different characteristics at different time (as observed in figure 2), but here all data 

collapses into a single master curve. The maximum value of the variable   becomes 

equal to 2 while the maximum value of 
0

u

u
 is  

0

u
f

u


2

y

t





2

1

 

 

 

equal to 1 (i.e. 0u u ). We can understand that if we have more time, we have more 

penetration depth y. But beyond 2  , the outer does not understand the effect of the 

Figure 3. The Variation of 
0

u

u
 as a function of the variable 

2

y

t



   . 



movement of the plate. So, this gives a nice physical insight to the problem. Although 

technically below y   , any fluid should understand the effect of the plate movement, 

but for all practical purposes, beyond the non-dimensional thickness 2   the fluid does 

not feel the effect of the plate movement. 

Stokes second problem: 

Now we will consider the next problem which is known as the Stokes 2
nd

 problem. Here 

the only difference with the Stokes 1
st
 problem is that instead of the plate moving along a 

particular direction it is oscillating with
0 sinu u t . All other considerations of the 

previous problem remain the same. So, the governing equation remains the same; only 

difference occurs in the boundary condition at 0y  .  

y

x

0 sinu t
 

 

 

 

Let us start with the governing equation
2

2

u u

t y


 


 
. If we do a scaling analysis of this 

equation, the scale of the term 
u

t




can be written as ~ 0

s

u

t
 and the scale of the term 

2

2

u

y




can be written as ~ 0

2

u



. This problem has a unique st . In the previous problem 

we can vary st  at our will but here st is governed by 
1


 which is the most important 

physics of this problem; other part is just trivial mathematics. So if st is of the order of 

1


, then 0

s

u

t
can written as 0u  and 0u  becomes of the order of 0

2

u



. This implies that 

 is of the order of ~



, it does not vary with time. It is fixed order of   which is 

governed by the two parameters   and  . Now we can non-dimensionalize governing 

Figure 4. Schematic of the Stokes 2
nd

 problem where the plate is oscillating 

with 0 sinu u t .  



equation
2

2

u u

t y


 


 
. u  is non-dimensionalized as 

0

u
u

u
 , t  is non-dimensionalized as 

s

t
t

t
  and y  is non-dimensionalized as 

y
y


  where 





 .  If we put the relevant 

scales in the equation
2

2

u u

t y


 


 
 we will get

2

2

u u

t y

 


 
 because all the coefficients will 

be absorbed in the non-dimensional parameters, one can easily check that. There are 

many ways of solving this equation. Here we will use a simple trick to solve this 

equation. Let us assume  Im itu e f y    . Now question may arise about why we have 

chosen this particular form. The boundary velocity is sinu t at 0y  . sin t is the 

imaginary part of 
ite  because 

ite  is equal to cost isin t . Then we can adjust the 

boundary condition by noting that u  will be equal to sin t if  f y is equal to 1. So it 

means the imaginary part of
ite should match with the form sin t . If the boundary 

condition was cosu t at 0y  then we would have assumed  Re itu e f y     where 

Re ite   indicates the real part of the function
ite . Substituting  Re itu e f y     in 

2

2

u u

t y

 


 
 we get imaginary terms on both sides and we take the inner part and do the 

algebra, i.e. 
itu

i e f
t





and

2

2

itu
f e

y





. Equating these expressions of 

u

t




 and 

2

2

u

y




we 

get the differential equation 0f i f   . If we take 
m te  as the trial solution to solve this 

differential equation, we get 1 2

i y i yf c e c e   where  1c  and 2c  are the constants to 

be determined using the boundary conditions. If we take that at y   , f  is finite then 

the term 1

i yc e  should not be there. So 1c  should be equal to zero. So, f becomes equal 

to 2

i yc e
, i.e. 2

i yf c e  which represents an exponential decay. Now i  can be written 

as 
2 cos sin

2 2

ii e i  
   . Therefore, i  can be written as 

4 1
cos sin

4 4 2

i i
i e i   
    . So, the function f becomes

1

2
2

i
y

f c e

 
 
  .  Now the 

evaluation of 2c  is straightforward. The boundary condition sinu t is valid at 0y  . At 

0y   we must have 1f   which means 2 1c  .  So the solution of this problem is 



1

2 22 2Im Im sin
2

i yy y
y i t

it y
u e e e e e t

   
     
   

     
        

       

. So we can notice that the 

solution is sinusoidal in nature. So the nature is same as present in the boundary 

condition but there is a phase difference. In the boundary condition it was sin t , but in 

the solution it is sin
2

y
t
 

 
 

 which is dependent on the spatial co-ordinate y . It is 

therefore suggested to the students to make a plot of 2 sin
2

y
y

u e t
  

  
 

 as a function 

of y  and t  using any kind of software. It will give the students a lot of interesting 

physical insight. So in this chapter we have discussed about two very important unsteady 

problems in terms of exact solution of Navier Stokes equation; namely Stokes 1
st
 

problem and Stokes 2
nd

 problem. 

 


