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Lecture - 02 

Lines of Flow Visualization and Acceleration of Flow 

I. Streamlines, Streaklines and Pathlines 

We discussed the formal definition of streamline, streakline and pathline in the previous 

lecture. Now, to obtain a functional form of these lines, we will work out an example.  

Prob. – Consider the flow-field 
0

x
u

t t
=

+
, 

0v v= , 0w = . Find: 

(i) Streamline: equation of a streamline passing through a point 0 0 0( , , )x y z at  time 

0t t= (the subscript ‘0’ is used symbolically and doesn’t necessary mean the values are 

zero) 

(ii) Streakline: Equation of a coloured line at time 02t t= , that is visible as a consequence 

of dye injection at 0 0 0( , , )x y z , starting from 
0t t= and continuing till 02t t=   

(iii) Pathline: Locus of a fluid particle that is at 0 0 0( , , )x y z at  time 
0t t=  

Soln. –  

(i) As discussed in previous lecture, we integrate 
dx dy

u v
= to obtain the equation for 

streamline. Only two terms are there because this is two-dimensional flow-field. 

Substituting the expressions for u and v in the equation, 0

0

( )dx t t dy

x v

+
= . Since the 

streamline at 
0t t= is sought, we substitute it in the equation and get 

0 02

dx dy

x t v
= and 

integrate to get 
0 02 ln( )y t v x c= + , where the constant of integration, c , is obtained by 

putting 0x x= and 
0y y= , giving us 0 0 0

0

2 ln
x

y y t v
x

 
= +  

 
.  

(ii) To obtain the equation for the streakline, we follow the following approach. Since 

streakline is the coloured line created due to injection of dye at a point in the flow-

field over a certain period of time, it is actually the locus of the different particles that 

have passed the injection point at some instance of time. Hence, we consider one such 

particle P . For this particle, P
P

dx
u

dt
= is the definition of the x -component of its 



velocity, similar expression exists for the y -component. Since the velocity of a 

particle at a point is the same as the velocity at that point, we obtain a merger of the 

Lagrangian and Eulerian descriptions, and therefore have 
dx

u
dt

= . Substituting the 

expression for u we have, 
0

x dx

t t dt
=

−
. This equation is integrated to get the expression 

for the streakline, 
0

0

2

0
i

x t

x t

dx dt

x t t
=

+  . The limits of integration in this equation are 

crucial. The lower limit for LHS is 0x as it is the x -coordinate for the point where the 

dye is injected, and the lower limit of RHS is the time at which the arbitrary particle 

P passes through the injection point. This time, it will be bounded between 
0t  

and 02t as that is the duration over which dye is injected. The upper limit of integration 

for the LHS and RHS are x and 02t  respectively as x  is the position of the arbitrary 

particle P  at time 02t  . Solving this, we have 0

0 0

3
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x t t

   
=   

+   
. Similarly, the 

expression for the y -component is 
0 0 0(2 )iy y v t t− = − . Eliminating it from these 

expressions yields the equation for the streakline. The final expression is 

0 0

0 0 0 0

3
ln ln

3

t vx

x t v y y

   
=   

+ −   
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(iii)The approach to obtain the equation for the pathline is the same as the streakline uptil 

the integration, 
0

dx dt

x t t
=

+  . For a pathline, the particle P is not arbitrary, and 

therefore, the lower limit of integration for the RHS is 
0t rather than it . On the other 

hand, the upper limit of integration for the RHS is an arbitrary time t  , because 

pathline is the locus of the positions occupied by the particle P at different instances 

of time. Therefore, the integral becomes 
0 0

0

x t

x t

dx dt

x t t
=

+  . Solving this, we get 

0

0 0

ln ln
2

t tx

x t

   +
=   

   
. Similarly, the expression for the y -component is 

0 0 0( )y y v t t− = − . Elimiating t from these expressions gives the equation for pathline, 

which is 0 0 0

0 0 0

2
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y y

x t
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The distinction between the equations for streakline and pathline can be summarized by 

the statement – in the equation for streakline, the initial time is eliminated, whereas, in the 

equation for pathline, the final time is eliminated.  



While streamlines, streaklines and pathlines are not constrained to be co-incident, under 

the special case of steady flows, they are co-incident. To clarify, let us consider a particle 

moving in a steady flow field. The particle assumes the positions P1, then P2, then P3, and 

then P4 at infinitesimal durations chronologically. Therefore, the curve joining these 

points is evidently the pathline. However, since the flow is steady, any other particle at 

any other instance of time at P1 is bound to go to P2, and then P3, and then P4. Therefore, 

the curve joining these four points is also the streakline. Finally, because the velocities are 

not changing with time at a given location, whenever a particle comes at P1, it will be 

guided along the same curve towards P2. So, curve is such a curve that the tangent to it 

will always represent the velocity of the flow. So, this line is also the streamline. An 

artifact of this co-incidence of streamlines and streaklines for steady flow is that when 

one visualizes a steady flow experiment using a dye injection, the curves seen become 

visual representations for the streamlines in addition to streaklines. However, this such 

visualizations should be done with caution as once the flow deviates from being steady, 

this fortunate co-incidence of streamlines and streaklines vanishes, and what one is seeing 

are only streaklines. 

II. Acceleartion of Flow 

We will now discuss the acceleration of flow. Acceleration is the time rate of change of 

velocity and therefore, it is important to study acceleration whenever we are studying 

velocity.  

From our understanding of high school physics, we can recall that the expression for 

acceleration a  , is 
dv

a
dt

=  . In the context of fluid mechanics, it is important to recognize 

that this expression for acceleration is applicable when the velocity is described as per the 

Lagrangian decription. However, in a flow field, the expression for velocity that is given is as 

per the Eulerian description. Hence, it becomes crucial to derive the expression for 

acceleration of a fluid particle in terms of the velocity field given in a Eulerial description. 

To derive this expression, consider a particle P which at a point ( , , )x y z and has velocity PV . 

This velocity is same as the velocity in the flow field at the point ( , , )x y z  at time t , v , which 

is a function of the position ( , , )x y z  and time t , i.e. PV = ( , , , )v x y z t  . After some time t , 

the particle flows to the point ( , , )x x y y z z+ + + , and its velocity becomes P PV V+  . 

This velocity will be same as the velocity in the flow field at the point ( , , )x x y y z z+ + +  

at time t t+ , i.e. P PV V+  = ( , , , )v x x y y z z t t+ + + + . The acceleration of particle 

P at time t can be obtained by considering an infinitesimally small instance of time in the 

future, i.e. in the limit 0t → . Represented by Pa , the acceleration of the particle P is 

0

( , , , ) ( , , , )
limP
t

v x x y y z z t t v x y z t
a

t →

+  + + + −
=


. 



Using the Taylor series expansion of ( , , , )v x x y y z z t t+ + + + , which is 

( , , , ) ( , , , ) . .
v v v v

v x x y y z z t t v x y z t t x y z H OT
t x y z

   
+  + + + = +  +  +  +  +

   
. 

. .H OT are the higher order terms, that are negligible in the limit 0t → . Substituting the 

Taylor series expansion in the expression for Pa , and recognizing that 
0

lim P
t

x
u

t →


=


, 

0
lim P
t

y
v

t →


=


and 

0
lim P
t

z
w

t →


=


, P P P P

v v v v
a u v w

t x y z

   
= + + +
   

.  

In the limit of 0t → , original position of particle and new position of particle get 

infinitesimally close, and so, the Lagrangian and Eulerian descriptions converge. Therefore, 

dropping the subscript P , the expression for acceleration in the Eulerian description is 

v v v v
a u v w

t x y z

   
= + + +
   

. 

In this expression, there are clearly two different types of expressions. The first expression, 

v

t




, is of the first type and it gives information about the steadiness or unsteadiness of flow. 

It is the acceleration due to change of velocity with time at a given location in the flow field. 

It is called as unsteady or temporal component. The next three expressions are of the second 

type, which signify the acceleration due to difference in velocities of two locations in flow 

field that the particle flows between. This is called as convective component of acceleration. 

The net acceleration is the combination of these two. Combined together, this spatiotemporal 

acceleration is commonly denoted by 
Dv

Dt
 , with 

D

Dt
commonly called ‘Total Derivative’. 

In vector notation, this acceleration is written as 

( )
Dv v

a v v
Dt t


= = + 


. 

The advantage of writing in vector notation is that it applies to non-cateresian coordinate 

systems as well, like cylindrical coordinate system and spherical coordinate system. 

The next lecture will discuss deformation of fluids, which is very different from deformation 

of solids. 


