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Lecture - 19 

Exact Solution of Navier Stokes Equation in Cylindrical Polar Coordinate System 

 

In the previous chapters we have discussed about exact solutions of Navier Stokes 

equation in Cartesian co-ordinate system. However, there are many problems in physics 

and engineering where other co-ordinate systems are important. One such important co-

ordinate system is the cylindrical polar co-ordinate system. In this chapter, we will 

discuss about two such problems in cylindrical polar co-ordinate system which are very 

commonly encountered in physics and engineering.   

 

Example 1. Fully developed laminar flow through a circular pipe (Hagen-Poiseuille 

flow) 
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The first problem is the fully developed laminar flow through a circular pipe which is 

also called as the Hagen-Poiseuille flow. The schematic of this flow is depicted in figure 

1.Till now we have not discussed about what the laminar flow is and what the turbulent 

flow is. Classically we introduce the Navier Stokes equation first and then we introduce 

the laminar and the turbulent flow in the subsequent chapters. Here, to give a little bit of 

physical understanding, by laminar flow we mean that the fluid is moving in orderly 

layered fashion one layer over the other and there is chaotic or random motion in the 

flow. Since we consider the fully developed flow, the concept of unidirectional nature of 

the flow is preserved. Otherwise if it is a turbulent flow, then it is a random chaotic flow. 

Figure 1. Schematic of the fully developed laminar flow through a circular pipe. 

The left hand side of the figure shows the other sectional view. 



In that case the unidirectional nature of flow may not be preserved. For simplicity let us 

assume the pipe is horizontal. Even if the pipe is inclined or vertical, now we know that 

there will be a component of gravity as a driving pressure gradient. Then we can replace 

the pressure by the summation of the static pressure  p and h g . So, p g h  is 

called as piezometric pressure. We can use the piezometric pressure instead of the static 

pressure if there is a component of gravity in the direction of flow. So, even if it is a 

horizontal pipe or an inclined pipe the method of working of the problem is still the 

same. 

Let us assume that the pipe has a radius R. The co-ordinates are shown in figure 1 

where r is the radial co-ordinate; z is the axial co-ordinate and θ is the azimuthal co-

ordinate. The left hand side of figure 1 shows the other sectional view where r is the 

radial direction and the cross-radial direction is called as the θ-direction which is defined 

by the polar angle θ. Let us consider the flow to be fully developed. For fully developed 

flow, first we write a simple force balance on a rectangular element drawn in figure 1. 

The length of the axial element is ‘dz’ and the radial element and te radial location is ‘r’. 

If the flow is fully developed, then all forces on this element are balanced so that there is 

no net acceleration. So, first we will write all the forces. In the left hand side of the 

rectangular element, there is a force 2p r where p is the pressure acting on the area 2r . 

On the right hand side of this element there is a force 2p
p dz r

z


 
  

 acting in the 

opposite direction. Also, there will be a shear force acting over the periphery of the 

element which is having a surface area 2 r dz ; so, the shear force becomes  2 r dz   

where  is the shear stress at a radial location r. Since all the forces are balanced, we can 

write the force balance equation as 

                                      2 2 2 0
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From equation (1), we get an expression for the shear stress as
2

r p

z
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. If the fluid is a 

homogeneous isotropic Newtonian fluid we can write zv

r
 


 


. Being the fully 

developed flow, the velocity in the z-direction  zv  becomes a function of the transverse 



co-ordinate (r) only and therefore, zv

r




can be written as zdv

dr
. This is exactly same like a 

flow between two parallel plates; the only difference in this equation arises because of 

the change in the co-ordinate system. Now question may arise because of the ‘-’ sign in 

the expression of the shear stress (τ). Similar to the Cartesian co-ordinate system here 

also we can write
du

dy
  . Then we need to define ‘y’ properly which is very important; 

one cannot take ‘y’ arbitrarily. If we have a surface then ‘y’ is in an outward normal 

direction to the surface (also shown in figure 1). So, here the ‘y’ co-ordinate which is 

normal to the wall is opposite to the r co-ordinate and that is why that has been adjusted 

by a minus sign. Now zdv

dr
  is a function of r only and 

p

z




is a function of z only. To 

know that whether 
p

z




becomes a function of z only or not one can refer to the r 

component of the momentum equation where the full Navier Stokes equation is required. 

In many books in the undergraduate level, for simplicity, 
p

z




is directly substituted by 

dp

dz
without even explaining the reason. The r-component of the momentum equation 

tells that it depends on two factors, the radial component of the flow rv  and the pressure 

gradient in the r direction
p

r




. Now for fully developed flow, the radial component of the 

flow rv is equal to zero which means that the pressure gradient in the r direction
p

r




is 

also equal to zero, i.e. 0
p

r





. Then only 

p

z




 can be replaced by

dp

dz
. So, the aforesaid 

aspect needs to be carefully considered, it is just like the y momentum equation for a 

flow between two parallel plates. Referring to that only one can tell that p becomes a 

function of z only and 
p

z




 can be written as

dp

dz
. This should not be taken as an 

automatic and that is why just the simple force balance in the z direction may not be 

sufficient enough to give the clear physical understanding of the problem. We also 

require the force balance in the r direction to tell the complete picture. So, the expression 

of the shear stress becomes
2

zdv r dp

dr dz
  . We can write this in the form of separated 



variables. If we take r on the left hand side, then the left hand side becomes a function of 

r only. Similarly, the right hand side will become the function of z only, i.e. 

2 zdv dp

r dr dz
  . In a mathematical way, in order to make them equal to each other, these 

two sides must be equal to a constant, say c . There are many ways to look into this 

equation, but the most important way is undoubtedly the physical way. The physical way 

tells that the force balance gives 0
p

r





. Now, we have

1 1

2
zdv dp

r dr dz
 ; it is written in 

such way that we have a separate function of r as well as a separate function of z. This 

two expressions 
1 zdv

r dr
 and 

1

2

dp

dz
are equal to the constant c , i.e. 

1 1

2
zdv dp

c
r dr dz

  . 

So, zdv  can be written as zdv cr dr . If we integrate it with respect to r, we get 

2

1
2

z

cr
v c   where 1c  is the integration constant. Now, this expression

2

1
2

z

cr
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may create a dilemma that the velocity dependence in the Navier Stokes equation is a 

second order dependence and accordingly, there should be two integration constants. But 

here only one integration constant 1c is appearing which means we can use one boundary 

condition to find out the velocity profile. So question may arise about the second 

boundary condition. The need of the other boundary condition is indeed needed in this 

analysis. Here, we have assumed symmetry with respect to the channel centerline. That 

means we have implicitly assumed that at r = 0, zdv

dr
is equal to zero; otherwise we 

cannot write the symmetric force balance. So we have zv  which is equal to
2

1
2

c r
c  

where the symmetry at the channel centerline has been used already. The remaining 

boundary condition is the no-slip condition which means that at r = R, zv  is equal to 

zero. Applying this we get the expression of 1c  as 
2

1
2

c R
c   . So, the complete 

expression of the velocity zv  is given by  2 2

2
z

c
v r R  . This is again a parabolic 

distribution. Now one can find out the average velocity and express the constant c  in 

terms of the average velocity. 

 



Now let us calculate the average velocity; the definition of the average velocity  V   

here is given by 0
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2
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 where the distribution of the velocity 
zv  is in the 

form  2 2

2
z

c
v r R  . The integrand 

0
2

R

zv r dr  becomes equal 

to  
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 . The term π gets cancelled out from 

the numerator and the denominator and the expression of the average velocity 

becomes
2

4

c R
V   . Therefore, the constant c  can be expressed in terms of the average 

velocity as
2

4V
c

R
  . Then, the ratio of the velocity distribution and the average velocity 

is given by
2

2
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. This expression 
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 is the velocity profile in 

terms of the average velocity for Hagen Poiseuille flow. Now we can calculate the 

pressure drop. In engineering, the velocity profile is undoubtedly important but what is 

fundamentally required is that if we want to drive a flow how much pumping power is 

required. Because it is the pumping power which is required to overcome the viscous 

resistance and without that the fluid cannot flow continuously through the pipe. So 

without that the application does not work. 

Using the expression of the constant c  of the velocity profile, we can 

write
2

1 4

2

dp V

dz R
  . Now the expression of the pressure gradient

dp

dz
can be given 

by
fh gdp

dz L


   where fh is termed as the head loss due to fluid friction. This is 

basically a length equivalent of energy. Here 
fh g

L


 is the energy that is lost in order to 

overcome friction. Since it is a loss of energy, a minus sign is written in the beginning. 

Substituting the expression of 
dp

dz
we can write

2

8fh g V

L R




 . One can express the 

average velocity in terms of the volumetric flow rate Q  as
2

Q
V

R
 . The reason behind 



expressing the average velocity in terms of volumetric flow rate is that it is the 

volumetric flow rate which is measured instead of the average velocity. Using this, the 

expression of fh becomes
2 4

8 8
f

V L Q L
h

g R g R

 

  
  . Normally in engineering, instead of 

pipe radius, pipe diameter is mainly used. If we substitute the pipe radius by the pipe 

diameter, i.e. 2R D , we get the final expression of fh , i.e. 
4

128
f

Q L
h

g D



 
 . This is 

called as the Hagen Poiseuille equation where fh  is the head loss due to fluid friction in 

fully developed flow through circular pipe. This equation tells us that for a given flow 

rate, the head loss fh is inversely proportional to the fourth power of the diameter of the 

pipe (D), i.e. 4

fh D . So if we reduce the diameter of the pipe, it requires huge 

pumping power to drive the flow. This is reason why in micro scale flow we have to use 

other forces like surface tension force, electrical force etc. to drive a flow in many 

practical circumstances. To maintain a particular flow rate, if we make the diameter of 

the pipe smaller and smaller, the head loss becomes larger and larger and huge pumping 

power is required. Now there are two important factors in engineering, one is the Darcy 

friction factor which is given by the Darcy Weisbach formula 
2

2
f

L V
h f
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  which is 

valid for both the laminar and the turbulent flow. For a fully developed laminar flow, this 

f can be calculated by equating the two expressions of the head loss fh , i.e. 
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 and we get

64

ReD

f   where D is the diameter of the 

pipe. The factor f is known as the Darcy friction factor. There is another friction factor 

or friction coefficient which is called as fanning friction coefficient which 

is
21

2

w
fC

V





 . The wall shear stress is related to the pressure gradient from which the 

head loss fh has come. One friction coefficient becomes 4 times the other; one is equal to 

16

ReD

while the other one is equal to
64

ReD

. This can be easily shown and has been left out 

for the students as an exercise. 

 



Example 2. Taylor Couette flow 

The second problem which we will consider here is a very interesting problem which is a 

flow between two concentric rotating cylinders. Let us consider two cylinders of radii 

h

0u

1R

2

1

2R
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1R and 2R respectively as shown in figure 2. This is called as the Taylor-Couette flow. 

The cylinders are rotating with angular velocities 1  and 2 . The gap between the two 

cylinders is filled up with a fluid. If 1 is different from 2 then there is a shear which is 

acts on the fluid. If the gap is very small then this is equivalent to a plane Couette flow. 

In a plane Couette flow we have two parallel plates in which one plate is moving relative 

to each other. In the present case the relative velocity can be considered as 1 2   

multiplied by the difference in the radial co-ordinate. Let us say this velocity is 0u  and 

the gap is h. If the gap h is very small, then the curvature of the cylinders may be 

neglected. This is then like a flow between two parallel plates, one plate is moving 

relative to the other; this is a classical shear driven flow. This scenario is actually 

encountered in a more realistic way. We will consider two examples. The first example 

is that we have a shaft (inner cylinder) and a bearing (outer cylinder) and then there is 

lubricating oil which separates the shaft and the bearing to avoid metal to metal contact. 

It is important to know the power required to rotate the shaft. On a different note this is a 

configuration which is commonly used to measure the viscosity of an unknown fluid 

which is kept in between the two concentric cylinders. This arrangement is known as 

Figure 2. Schematic of the flow between two concentric cylinders. The right hand 

side of the figure shows the corresponding case for the plane Couette flow. 



rotating cylinder viscometer which is a classical way of measuring the viscosity of an 

unknown fluid. If we measure the torque and the power which is required to drive one 

cylinder relative to the other, that expression will have viscosity as a parameter from 

which one can measure the viscosity. With this little bit of motivation, we will use the 

cylindrical co-ordinate Navier Stokes equation. Since the Navier Stokes equation has 

already been discussed in the earlier chapters, we will directly use the different equations 

without referring to the physical basis. The continuity equation in the cylindrical co-

ordinate system is given by      

                                             
1

0z
r

v v
r v

r r z




  
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                                                (2) 

This particular writing of the Navier Stokes equation and the continuity equation in the r-

θ-z co-ordinate system is a little bit of a tedious job. We don’t need to memorize these 

equations. The important objective is to see that how these equations can be applied to 

solve the present problem.  

In the present problem, there is the v  component of velocity but it is not a function of 

the   co-ordinate, so, 0
v







. We assume the cylinder is infinitely long so that there is 

negligible gradient 0zv

z





. So, the simplified form of the continuity equation becomes 

  0rr v
r





 which means that rr v  is not a function of the radial co-ordinate r. So, from 

the continuity equation we get 0rv   because 
rv is equal to zero at radius 

1r R  and 

2r R  respectively. So, rv  has to be equal to zero at all radial locations. Now we will 

consider the r-momentum equation. Since these are long equations, we need to write 

these equations very carefully; otherwise we may make some mistakes. Then we will 

asses various terms of these equations. The r-momentum equation is given below 
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Here, the term rv

t




is zero because the velocity component rv is equal to zero as well as 

the flow is steady. Since rv is equal to zero, all terms involving rv becomes equal to zero. 



Since there is no body force in the radial direction 
rb is equal to zero. It is important to 

note that the velocity component v is not equal to zero. However v  is not a function of 

θ, i.e. 0
v







. Considering all these factors, the simplified form of the r-momentum 

equation can be written as  
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
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                                                                  (4) 

Then we will focus on the other momentum equations. Let us consider the z-momentum 

equation which is given in the following 
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The z-momentum is expected to be redundant because v  is the predominant component 

of velocity. From the r-component we have got an equation for the pressure gradient. 

Here, in the z-momentum equation zv

t




is equal to zero because it is a steady flow. 

Since 
rv is equal to zero, the term z

r

v
v

r





 becomes equal to zero. Since there is no 

variation in the axial (z) direction, the terms z
z

v
v

z





, 

2

2

zv

z




 are equal to zero. Since v  

is the predominant component of velocity, the term 
1 zv

r
r r r


  

 
  

is equal to zero. Since 

there is no variation in the θ-direction, the terms zv v

r







 and 

2

2 2

1 zv

r







become equal to 

zero. There is no body force in the axial direction, so 0zb  . Then the simplified form 

of the z-momentum equation becomes 

                                                      0
p

z





                                                                        (6) 

The problem may be complicated by pulling one of the cylinders axially. In that case the 

zv component will also exist in addition to the v  component. Finally we will focus on the 

θ-momentum equation which is given as follows      
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Because of the steady flow assumption, the term 
v

t





is equal to zero. Since there is no 

rv  component, the terms r

v
v

r





 and rv v

r

  are equal to zero. Because there is a 

symmetry with respect to the θ-direction, the terms 
v v

r
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




, 

2
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r







and 

2
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r







are 

equal to zero. Since there is no variation in the axial (z) direction, the two 

terms z

v
v

z





and 

2

2

v

z





are equal to zero. There is no body force in the θ-direction, so, 

0b   and there is no pressure gradient in the θ-direction, so, 
1

0
p

r 





. Then, the 

simplified form of the θ-momentum equation is given by  

                                                  
1
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r r r



  
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Since v  becomes a function of r only, we can write this partial differential equation as 

an ordinary differential equation, i.e.  
1

0
d d

r v
dr r dr



 
 

 
. Integrating this with respect 

to r we get,   1

1 d
r v C

r dr
   where 

1C  is integration constant. Integrating this again with 

respect to r results 
2

1 2
2

r
r v C C    with 2C  being the other integration constant. So, the 

velocity distribution becomes 2
1

2

Cr
v C

r
    which is of the form of

B
v Ar

r
    where 

A and B are the two constants. To determine these constants we need to apply the 

boundary conditions. At 1r R , the velocity v  is equal to 1 1R , i.e. 1 1v R  . 

Similarly, at 2r R , the velocity v  is equal to 2 2R , i.e. 2 2v R  . Now if we 

consider about an interesting problem where there is only one cylinder rotating in an 

infinite fluid (Example 1) in that case there is no 2  and we must have finite v as r is 

tending towards infinity, i.e. r  . So if there is a cylinder or sphere which is rotating 

in a infinite fluid, v  has to be finite at r  ; this is a matching boundary condition 



which must be satisfied. Then the constant A must be equal to zero otherwise the 

velocity v  will be infinity as r is approaching towards infinity. So, in that case v is 

reduced to the form 
B

v
r

   where the constant B is obtained by applying the boundary 

condition, i.e. at 
1r R ,

1 1v R  . This is the example of the classical free vortex flow. 

Now we can calculate the viscous stress 
r  from the 

expression
1 r

r

v v
r

r r r


 


   
      

. If we calculate this we will find that the viscous 

stress r  is non-zero. Now, we can calculate the volumetric viscous force 2v  for 

which we need to use the vector identity (as used earlier)     2v v v     . 

Because it is an irrotational flow,  v   is equal to null vector. For an 

incompressible flow, v  is equal to zero (We need to remember that this condition is 

satisfied only for incompressible flow). Then 
2v  and thus the volumetric viscous force 

2v  becomes equal to zero for an incompressible flow. So this is a non-intuitive 

physical situation where the shear stress or the viscous stress is non-zero but the viscous 

force per unit volume is zero. Local shear stress may not zero but when it is integrated 

over a volume the net effect is such that there is no net viscous force. We are coming to 

this conclusion only because of the consideration of the incompressible flow. If it is not 

an incompressible flow this equality does not work. So, in this chapter, we have 

discussed about the uses of Navier Stokes equation in cylindrical polar co-ordinate 

system trough two important examples. The next chapter will focus about some unsteady 

flow solutions based on the exact solutions of simplified Navier Stokes equation. 

 

 


