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Lecture - 17 

Exact Solution of Navier Stokes Equation: Example of Fully Developed Flow 

In the previous chapter, the Navier Stokes equation and its derivation were discussed. In this 

chapter, the main focus is to identify some physical problems for which the exact solution of the 

Navier Stokes equation is possible. These problems are limited in number since most of the 

practical problems are essentially non-linear. However, there are certain cases where the 

practical problems are also linear in nature. 

The first example under consideration is the pressure-driven internal flow. There are two parallel 

plates. This is a simple but very elegant assumption of internal flow. Internal flow means that 

there is a confined passage within which the fluid is flowing which may be driven by a pressure 

gradient. The flow may be closed from all directions typically observed in the case of a 

rectangular duct or circular duct. If the width of the rectangular duct is much larger than the 

height, then it can be treated as two parallel plates because of negligible end effects and can be 

considered as a parallel plate channel. 
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Fig 1. Schematic of the flow through a parallel plate channel. 



Here, figure 1 represents a parallel plate channel where the dash-dot line indicates the center-line 

of the channel. The fluid enters from the far stream with a velocity U
. When the fluid 

encounters the solid boundary (shown by section 1 of figure 1), because of the viscous effect, the 

fluid will come to a standstill; this is known as no-slip boundary condition (applicable at point 

A). The velocity somewhere above this location (i.e. at point B in figure 1) is greater than zero 

but not the maximum one. In this way, it will come to a state where the velocity will become 

maximum and beyond which it will not change further. Since the problem is symmetric, no-slip 

condition along with other boundary conditions are also applicable on the other side of the 

channel. 

Now, as we go to a section (section 2) that is a little bit advanced, the wall effects become more 

pronounced. Since we enter more into the channel, greater is the depth up to which the viscous 

effects are felt and accordingly the velocity gradient should exist up to that depth. Now we draw 

the locus of the points within which the wall effect creates the velocity gradient, this locus 

(violet-colored line in figure 2) is called the edge of the boundary layer. The boundary layer is 

the layer close to the solid boundary where the viscous effects are felt thereby giving rise to the 

velocity gradient.  
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Fig 2. Different regions for the flow through a parallel plate channel. 



The region occupied by the violet-colored lines is known as the core region while the outside 

region is known as the boundary layer region. As shown in figure 2, the boundary layers merge 

with each other at somewhere close to the section 2 (this position is located by the red colored 

dotted line in figure 2). Up to this location, the boundary layers are growing and it is known as 

developing region. Within the developing region, the core fluid does not understand the presence 

of the solid boundary but beyond this region, the entire fluid understands the effect of the solid 

boundary. Beyond the developing region, the flow has become fully developed which means that 

the velocity profile does not change in the axial direction anymore.  

So, the region left to the red colored dotted line is called developing region or entrance region 

and the region right to the dotted line is called fully developed region. The fully developed 

region is a region where the velocity u  is no longer a function of x-coordinate. For the sake of 

understanding, we now focus to obtain some plots like the variations of core velocity  CU , wall 

shear stress  w  and pressure  p  with axial coordinate x. 
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Let us first consider two sections 1 and 2 as depicted in figure 2. Now the question is that, 

between these two sections, where the core velocity is more. The flow rates are constant in these 

two sections and if we assume the density of the fluid (ρ) to be constant, then the volumetric flow 

Fig 3. Variations of core velocity  CU , wall shear stress  w  and pressure  p  as a 

function of axial coordinate x. 



rate is also constant. This volume flow rate can be obtained by integrating the velocity profile 

across the cross-section.  

So, as we move from section 1 to section 2, the boundary layer becomes thicker which means 

that there is a thicker region over which the fluid is decelerated. In order to maintain the same 

flow rate, the velocity should be more in the region where the fluid is accelerated since the 

integral of these two sections is the same. That means the core velocity in section 2 is greater 

than the core velocity in section 1 until it becomes fully developed and then the core velocity 

does not change with x. The axial variation of the core velocity  CU  is shown by the red-

colored solid line in figure 3. 

Now we focus on the wall shear stress. Regarding this, let us first consider the fully developed 

region. The deviatoric stress is what that dictates Newton's law of viscosity, i.e. 
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. At the wall, there is no v-component which is known as no penetration 

boundary condition. Now u is 0 at the wall because of the no-slip condition while v component is 

zero because of no penetration condition which means that the fluid cannot penetrate through the 

wall. Since there is no v component, 
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, the fully developed velocity u  

does not change with x, the wall shear stress also does not change with x. So, the wall shear 

stress in the fully developed region is axially invariant.  

Now the question arises about the variation of the same with x in the developing region. Form 

definition, the wall shear stress is of the order of ~ CU



 where CU  is the core velocity and   is 

the boundary layer thickness. The interesting thing to observe is that as one moves along the 

entrance region CU  increases and   also increases. So, now, we need to determine the ratio CU


 

in order to check whether it is increasing or decreasing. When the fluid just enters the channel,   

is tending towards zero while CU  is finite. So the resulting shear stress will be very large. 

Understandably, the wall shear stress should come down asymptotically from such a large value 

and it cannot blow up. This variation with x is depicted by the green-colored solid line in figure 



3. Now, to understand the pressure variation with x, let us consider a fluid element in the fully 

developed region where 
w  indicates the wall shear stress on both walls. 
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Let us take the differential element of length 'dx'. The viscous force acting is denoted by 
w  

multiplied by the width of the element (W) which is chosen as unity. The total height of the 

channel is H (shown by two equal H/2 lengths in figure 4). The force due to pressure can be 

quantified as 1p H   on the left-hand side of the element and   1p dp H    on the right-

hand side of the element. We are assuming that p is not a function of the transverse coordinate y 

and is a function of x only. One can justify this assumption using the y-component of the 

momentum equation, where one can show that the variation of p with y is indeed 0.  

For fully developed flow, since there is no acceleration, the velocity profile is not changing 

which means all acting forces are balanced. So, the force balance gives 

  2 0wp H p dp H dx     where the wall shear stress  w  is given by 
2

w

H dp

dx
  . So, if 

w  remains constant, 
dp

dx
 also remains constant which means the variation of p with x will be 

linear in nature in fully developed region, while in the developing region, it is non-linear in 

nature. This variation of pressure (p) with x is shown by the blue colored solid line in figure 3. 

This kind of qualitative depiction without getting into much of mathematics, but getting a 

physical picture of how the basic variables are varying is very important to develop in physics 

Fig 4. Force balance across a differential element of length dx. 



and engineering. The rest of the chapter is directed towards the derivation of the velocity profile 

in the fully developed region which is depicted in figure 2 as parabolic distribution (the 

rightmost velocity profile of figure 2). 

Fully developed flow between two parallel plates (Plane Poiseuille flow) 
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Now we consider fully developed flow between two parallel plates; this is called plane Poiseuille 

flow. So, let us assume two dimensional plus incompressible flow. So, we have considered two 

parallel plates as shown in figure 5, the centerline is x-axis and the transverse direction is the y-

axis. The incompressibility equation is given by 
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For fully developed flow, u  is not a function of x, 0
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 which also means that v is not a 
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H
y   , v is 0 because of no penetration 

condition (not to be confused with the no-slip condition). So, this means v is zero for all y. Now, 

the x-component of the Navier Stokes equation is written as  
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This equation (2) is just a traditional way of writing the Navier Stokes equation, there is no body 

force term.  

Figure 5. Geometry of the fully developed flow between two parallel plates. 



Then we can focus on the y-component of the Navier Stokes equation for which all of the 

previous assumptions remain valid. We assume the flow to be steady, so 
u

t


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 becomes 0. The 

term 
u

x




 becomes zero for fully developed flow and v becomes zero as a corollary of fully 

developed flow provided there are no holes at the wall. The situation will be different if there are 

holes even if the fully developed condition is satisfied. With these assumptions, the simplified 

form of equation (2) is written below 
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where 
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 can be replaced as 
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 since u is not a function of x and becomes a function of y 

only for fully developed flow. So when there are no holes on the wall, v is zero everywhere; most 

of the terms in the y-component of the momentum equation involves v and thus become zero. 

The general form of the y-momentum equation is given below 
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With the aforesaid considerations, the simplified y-momentum equation becomes 0
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which means that p is not a function of y. So, p becomes a function of x only. Hence, the 
p
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term in the x-momentum equation can be replaced by 
dp

dx
. Therefore, the simplified x-

momentum equation becomes  
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which means 
2

2

1d u dp
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 . Physically what it means is that the pressure force due to pressure 

gradient is balanced exactly by force due to viscous effect and that is how the fluid is not 

accelerating. Integrating equation (5) once with respect to y gives  
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while integrating equation (6) results in the following expression of the velocity distribution 
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Since the problem is symmetric, one can take only half of the domain and solve it easily. Now, 

we employ the boundary conditions in order to obtain the integration constants 
1c  and 

2c . 

At the channel centerline, i.e. at 0y  , we have 0
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 . Since it is symmetric, u  becomes 

maximum at the channel centreline, therefore velocity gradient vanishes and thus 
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. Substituting 1c  and 

2c , the final form of the velocity profile is given by  
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Here, y is always less than 
2

H
 and 

dp

dx
 is negative because the fluid is being driven by a pressure 

gradient from higher pressure to lower pressure. So, both 
dp

dx
 and 
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 terms are 

negative and the combination of these two results in the positive value of the velocity. 

Sometimes the pressure gradient is not measured, but the flow rate is measured. So, it is possible 

to express this in terms of the average velocity  u  which is defined as 
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Conceptually the average velocity is the equivalent velocity which could have prevailed had the 

velocity profile be uniform and the same flow rate would have been maintained. Here, the 

numerator 
2

2

H

H
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
  indicates the flow rate where the area can be given by the height H 

multiplied by unit width W. The width terms get canceled from the numerator and denominator 

and substituting this expression of average velocity in the velocity profile one can rewrite the 

velocity distribution as  
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Equation (9) is a parabolic distribution which is the expression of the fully developed velocity 

profile for flow between two parallel plates (also known as the so-called plane Poiseuille flow).  

In summary, some exact solutions of the Navier Stokes Equation are discussed which will be 

continued in the next chapter. 


